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The s(n) function

Definition
Let s(n) denote the sum of proper divisors of n.

Example: s(p) = 1 for any prime p

Example: s(12) = 1 + 2 + 3 + 4 + 6 = 16

We can write s(n) = σ(n)− n, where σ(n) is the
sum-of-divisors function.
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Perfect numbers

Pythagoras observed:

s(6) = 1 + 2 + 3 = 6.

Definition
n is perfect if s(n) = n.
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Augustine on perfect numbers

Augustine (400 CE): “Six is a number perfect in itself, and not
because God created all things in six days; rather, the converse
is true. God created all things in six days because the number is
perfect.”
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Amicable pairs

Definition
If s(n) = m, s(m) = n, and m 6= n, then n and m form an
amicable pair.

Example (Pythagoras):

s(220) = 284, s(284) = 220.

As of March 10, 2024, there are 1, 228, 889, 024 known
amicable pairs!
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Pythagoras on friendship

Pythagoras (6th century BCE), on friendship: “One who is the
other I, such as 220 and 284.”
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Al-Majriti on amicable pairs

Al-Majriti (10th century CE): “[I] have tested the erotic effect
of... giving any one the smaller number 220 to eat, and [myself]
eating the larger number 284.”
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A modern example

A modern example (from XKCD):
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A friendship necklace

“Friendly numbers” necklace from MRCR Unique Creations
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Iterates of s

We can view s as a dynamical system, looking at its iterates:

6→ 6

8→ 7→ 1

10→ 8→ 7→ 1

12→ 16→ 15→ 9→ 4→ 3→ 1

28→ 28

220→ 284→ 220

276→ 396→ · · ·

A sequence of these iterates of s is known as an aliquot
sequence.11 / 72
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Conjectures on the iterates of s

Catalan-Dickson Conjecture: Every aliquot sequence is
bounded.

Guy-Selfridge Counter-Conjecture: Most aliquot sequences
starting from an even number are unbounded.

No unbounded aliquot sequences are known, but the first
candidate is 276.
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Computational evidence

Evidence against Catalan-Dickson? Bosma looked at aliquot
sequences with starting numbers below 106. Approximately 1/3
of the even starters have yielded aliquot sequences that haven’t
yet terminated (computed up to 1099).

Evidence against Guy-Selfridge? Bosma and Kane found
that the asymptotic geometric mean of the ratios of s(2n)/2n
is slightly below 1.
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Motivating questions

“Studying the comparison of s(n) to n led to theorems of
Schoenberg, Davenport, and Erdős-Wintner, and the birth of
probabilistic number theory.” -Carl Pomerance

In this talk, we will focus on two particular questions concerning
the function s(n):

1 Which numbers are of the form s(n)?

2 How large is the set s−1(n)?

And then we will involve the integers with missing digits...
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The image of s

Erdős was the first to consider questions about the image of s.
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The image of s

It is easy to see that almost all odd numbers are contained in
the image of s. To show this, we appeal to a variant of the
Goldbach Conjecture that has been proven.

Photo credit: XKCD
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Odd integers in the image of s

Theorem
Almost all odd numbers are contained in the image of s.

Proof.

If p, q are primes with p 6= q, then s(pq) = p+ q + 1.

Strong Goldbach’s Conjecture: All even integers ≥ 8 are the
sum of two unequal primes.

This has actually been proven for all but an exceptional set with
asymptotic density 0!

So almost all odd numbers ≥ 9 are values of s.
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Odd integers in the image of s

Theorem
Almost all odd numbers are contained in the image of s.

Proof.
If p, q are primes with p 6= q, then s(pq) = p+ q + 1.

Strong Goldbach’s Conjecture: All even integers ≥ 8 are the
sum of two unequal primes.

This has actually been proven for all but an exceptional set with
asymptotic density 0!

So almost all odd numbers ≥ 9 are values of s.
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Odd integers in the image of s

Theorem
Almost all odd numbers are contained in the image of s.

Proof.
If p, q are primes with p 6= q, then s(pq) = p+ q + 1.

Strong Goldbach’s Conjecture: All even integers ≥ 8 are the
sum of two unequal primes.

This has actually been proven for all but an exceptional set with
asymptotic density 0!

So almost all odd numbers ≥ 9 are values of s.
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Odd integers in the image of s

Theorem
Almost all odd numbers are contained in the image of s.

Proof.
If p, q are primes with p 6= q, then s(pq) = p+ q + 1.

Strong Goldbach’s Conjecture: All even integers ≥ 8 are the
sum of two unequal primes.

This has actually been proven for all but an exceptional set with
asymptotic density 0!

So almost all odd numbers ≥ 9 are values of s.
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Odd integers in the image of s

Theorem
Almost all odd numbers are contained in the image of s.

Proof.
If p, q are primes with p 6= q, then s(pq) = p+ q + 1.

Strong Goldbach’s Conjecture: All even integers ≥ 8 are the
sum of two unequal primes.

This has actually been proven for all but an exceptional set with
asymptotic density 0!

So almost all odd numbers ≥ 9 are values of s.
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What about even numbers?

Theorem (Erdős, 1973)
A positive proportion of even integers are missing from the
image of s.

Theorem (Luca & Pomerance, 2014)
A positive proportion of even integers are in the image of s.
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The image of s

The function s can map sets of asymptotic density 0 to sets
with positive asymptotic density.

Example If A = {pq : p, q prime} then A has asymptotic
density 0 but s(A) has asymptotic density 1/2.

Example Erdős constructed sets A of positive density such that
s−1(A) not only has density 0 but is, in fact, empty.
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The preimage of s

What can be said about s−1(A)
when A has asymptotic density 0?
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The EGPS Conjecture

Conjecture (Erdős, Granville, Pomerance, Spiro, 1990)

Let A be a set with asymptotic density 0. Then s−1(A) also
has asymptotic density 0.
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Special cases of EGPS

Some special cases of EGPS have been proven:

(Pollack, 2014) If A is the set of primes, then s−1(A) has
asymptotic density 0.

(Troupe, 2015)
If Aε = {m : |ω(m)− log logm| > ε log logm} then
s−1(Aε) has asymptotic density 0.

(Pollack, 2015) If A is the set of palindromes in any given
base, then s−1(A) has asymptotic density 0.

(Troupe, 2020) If A is the set of integers that can be
written as a sum of two squares, then s−1(A) has
asymptotic density 0.26 / 72
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Other recent related problems

Some very recent progress on s(n):

(Pollack and Singha Roy, 2022) For any fixed k ≥ 4, the
k-th power-free values of n and s(n) are equally common.

(Lebowitz-Lockard, Pollack, Singha Roy, 2023) The values
of s(n) (for composite n) are equidistributed among the
residue classes modulo p for small primes p.

(Pollack and Troupe, 2023) The function ω(s(n)) has the
same mean and variance as ω(n).
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Lebowitz-Lockard, Pollack, Singha Roy, and Troupe
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Our result

Theorem (Pollack, Pomerance, T., 2017)

Let ε→ 0 as x→∞. Suppose A is a set of at most x1/2+ε

positive integers. Then, as x→∞,

#{n ≤ x : s(n) ∈ A} = oε(x)

uniformly in A.
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Consequences

Immediate consequences of our result:

If A is the set of palindromes in any given base, then
s−1(A) has density 0.

If A is the set of squares, then s−1(A) has density 0.
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Proof Sketch

We can assume that ε ≥ 1/ log log x.

Let A be a set of at most x1/2+ε integers.

When counting m ≤ x with s(n) ∈ A, we can immediately
discard inconvenient n, including:

n ≤ x1/2

n with no prime factor up to log x

n with squarefull part > x2ε

n with gcd(n, σ(n)) > log x

n with a divisor between x1/2−10ε and x1/2+10ε

(With each of these conditions, we throw out o(x) integers.)
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Proof Sketch

Proof Strategy:

1 Show that for each a ∈ A, the number of remaining n ≤ x
with s(n) = a is ≤ x1/2−ε.

2 Since #A ≤ x1/2+ε, this “pointwise” bound on the number
of preimages is enough to complete the proof that

#{n ≤ x : s(n) ∈ A} = o(x).
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Proof Sketch

Where does this pointwise bound come from?

Write n = de where d is the largest divisor of n not exceeding√
x. Note that e > 1.

We will bound the number of possibilities for e, given d, and
then sum over d.

Our assumptions on n imply that

d < x1/2−10ε

but also
dP−(e) > x1/2+10ε.

From these inequalities, one can deduce (using that n has small
squarefull part) that gcd(d, e) = 1.
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Write n = de where d is the largest divisor of n not exceeding√
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We will bound the number of possibilities for e, given d, and
then sum over d.

Our assumptions on n imply that

d < x1/2−10ε

but also
dP−(e) > x1/2+10ε.

From these inequalities, one can deduce (using that n has small
squarefull part) that gcd(d, e) = 1.
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Where does this pointwise bound come from?

Write n = de where d is the largest divisor of n not exceeding√
x. Note that e > 1.

We will bound the number of possibilities for e, given d, and
then sum over d.

Our assumptions on n imply that

d < x1/2−10ε

but also
dP−(e) > x1/2+10ε.

From these inequalities, one can deduce (using that n has small
squarefull part) that gcd(d, e) = 1.
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Proof Sketch

Where does this pointwise bound come from?

Write n = de where d is the largest divisor of n not exceeding√
x. Note that e > 1.

We will bound the number of possibilities for e, given d, and
then sum over d.

Our assumptions on n imply that

d < x1/2−10ε

but also
dP−(e) > x1/2+10ε.

From these inequalities, one can deduce (using that n has small
squarefull part) that gcd(d, e) = 1.
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Proof Sketch

Where does this pointwise bound come from?

Write n = de where d is the largest divisor of n not exceeding√
x. Note that e > 1.

We will bound the number of possibilities for e, given d, and
then sum over d.

Our assumptions on n imply that

d < x1/2−10ε

but also
dP−(e) > x1/2+10ε.

From these inequalities, one can deduce (using that n has small
squarefull part) that gcd(d, e) = 1.37 / 72
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Proof Sketch

Now consider the equation

s(de) = a.

Using the definition of s and multiplicativity of σ:

σ(d)s(e) + s(d)e = a.

So, it is enough to bound the # of possibilities for s(e), given
d, since d and s(e) determine e, and hence determine n = de.

Moreover, this equation tells us that

σ(d)s(e) ≡ a (mod s(d)).

Given d, this puts s(e) in a uniquely determined residue class
modulo s(d)/ gcd(s(d), σ(d)).
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Now consider the equation

s(de) = a.

Using the definition of s and multiplicativity of σ:

σ(d)s(e) + s(d)e = a.

So, it is enough to bound the # of possibilities for s(e), given
d, since d and s(e) determine e, and hence determine n = de.

Moreover, this equation tells us that

σ(d)s(e) ≡ a (mod s(d)).

Given d, this puts s(e) in a uniquely determined residue class
modulo s(d)/ gcd(s(d), σ(d)).
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Now consider the equation

s(de) = a.

Using the definition of s and multiplicativity of σ:

σ(d)s(e) + s(d)e = a.

So, it is enough to bound the # of possibilities for s(e), given
d, since d and s(e) determine e, and hence determine n = de.

Moreover, this equation tells us that

σ(d)s(e) ≡ a (mod s(d)).

Given d, this puts s(e) in a uniquely determined residue class
modulo s(d)/ gcd(s(d), σ(d)).
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Now consider the equation

s(de) = a.

Using the definition of s and multiplicativity of σ:

σ(d)s(e) + s(d)e = a.

So, it is enough to bound the # of possibilities for s(e), given
d, since d and s(e) determine e, and hence determine n = de.

Moreover, this equation tells us that

σ(d)s(e) ≡ a (mod s(d)).

Given d, this puts s(e) in a uniquely determined residue class
modulo s(d)/ gcd(s(d), σ(d)).
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Now consider the equation

s(de) = a.

Using the definition of s and multiplicativity of σ:

σ(d)s(e) + s(d)e = a.

So, it is enough to bound the # of possibilities for s(e), given
d, since d and s(e) determine e, and hence determine n = de.

Moreover, this equation tells us that

σ(d)s(e) ≡ a (mod s(d)).

Given d, this puts s(e) in a uniquely determined residue class
modulo s(d)/ gcd(s(d), σ(d)).42 / 72
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Proof Sketch

Where are we at?

Given d, we want to count the number of possibilities for s(e).
We know that s(e) is in a uniquely determine residue class mod
s(d)/ gcd(s(d), σ(d)).

We want an upper bound on s(e). A lower bound is easy:
s(e) ≥ e/P−(e).

The lower bound isn’t so helpful, but it’s not difficult to show
that it isn’t too far from the truth:

s(e)� log x · e

P−(e)
.
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Recall:
s(e)� log x · e

P−(e)
.

Since de = n ≤ x, we have e ≤ x/d, so

s(e)� log x · x

dP−(e)
.

Remember dP−(e) ≥ x1/2+10ε, so

s(e)� log x · x1/2−10ε.
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Proof Sketch

Recap: s(e) is in a uniquely determined residue class modulo
s(d)/ gcd(s(d), σ(d)) and s(e)� log x · x1/2−10ε.

The number
of possibilities for s(e), given d, is thus

� log x · x1/2−10ε · gcd(s(d), σ(d))
s(d)

+ 1.

We have s(d) ≥ d/P−(d) ≥ d/ log x.

Also, gcd(s(d), σ(d)) = gcd(d, σ(d)), and this divides
gcd(n, σ(n)). Therefore, gcd(s(d), σ(d)) ≤ log x.

So our upper bound is

� (log x)3 · x1/2−10ε/d+ 1.

Summing over d ≤ x1/2−10ε gives our desired upper bound.
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Recap: s(e) is in a uniquely determined residue class modulo
s(d)/ gcd(s(d), σ(d)) and s(e)� log x · x1/2−10ε. The number
of possibilities for s(e), given d, is thus

� log x · x1/2−10ε · gcd(s(d), σ(d))
s(d)

+ 1.

We have s(d) ≥ d/P−(d) ≥ d/ log x.

Also, gcd(s(d), σ(d)) = gcd(d, σ(d)), and this divides
gcd(n, σ(n)). Therefore, gcd(s(d), σ(d)) ≤ log x.

So our upper bound is

� (log x)3 · x1/2−10ε/d+ 1.

Summing over d ≤ x1/2−10ε gives our desired upper bound.
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Recap: s(e) is in a uniquely determined residue class modulo
s(d)/ gcd(s(d), σ(d)) and s(e)� log x · x1/2−10ε. The number
of possibilities for s(e), given d, is thus

� log x · x1/2−10ε · gcd(s(d), σ(d))
s(d)

+ 1.

We have s(d) ≥ d/P−(d) ≥ d/ log x.

Also, gcd(s(d), σ(d)) = gcd(d, σ(d)), and this divides
gcd(n, σ(n)). Therefore, gcd(s(d), σ(d)) ≤ log x.

So our upper bound is

� (log x)3 · x1/2−10ε/d+ 1.

Summing over d ≤ x1/2−10ε gives our desired upper bound.
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Recap: s(e) is in a uniquely determined residue class modulo
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of possibilities for s(e), given d, is thus
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+ 1.

We have s(d) ≥ d/P−(d) ≥ d/ log x.
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Summing over d ≤ x1/2−10ε gives our desired upper bound.
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Integers with missing digits
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Defining integers with restricted digits

For a proper subset D ( {0, . . . , g − 1} such that 0 ∈ D, we
define

WD :=

n ∈ N : n =
∑
j≥0

εj(n)g
j , εj(n) ∈ D


and

WD(x) :=WD ∩ [1, x] .

Notice that this set has asymptotic density 0.
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Early results on integers with missing digits

Theorem (Erdős, Mauduit, and Sárközy, 1998)
Integers with missing digits are well-distributed in arithmetic
progressions.
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Almost primes with restricted digits

Theorem (Dartyge and Mauduit, 2000)
There exist infinitely many n ∈ W{0,1} with at most
(1 + o(1))8g/π prime factors as g →∞.
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Thin sets of primes

Maynard asked: Are there infinitely many primes with a given
digit (e.g., 7) missing? Observe that:

∑
p prime

1

p
=∞

∑
p no 7′s

1

p
≤ 100

Conclusion: The set of primes without any 7’s in their decimal
representations is very “thin” compared with the full set of
prime numbers.

Extra challenge: applying sieve methods to “thin” sets.
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Primes with missing digits

Theorem (Maynard, 2019)
There are infinitely many primes with missing digits.
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Maynard’s approach

Diagram by Sebastían Carrillo Santana59 / 72
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Polynomial values with missing digits

Theorem (Maynard, 2022)
There are infinitely many n such that P (n) ∈ WD, for any
given non-constant polynomial P ∈ Z[X], large enough base g,
and D = {0, . . . , g − 1} \ {a0}.
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Sums of proper divisors with missing digits

Our WINE Project: we study Ws,D := s−1(WD).

61 / 72

Lola Thompson Preimages of the sum of proper divisor function



Preimages of
the sum of

proper divisor
function

Lola
Thompson

Introduction

Image of s

Preimage of
s

Integers with
missing digits
Our results

Sums of proper divisors with missing digits

Theorem (Benli, Cesana, Dartyge, Dombrowsky, T., 2024)
Let A be a set of integers with missing digits in any base g ≥ 3.
Then s−1(A) has asymptotic density 0.

In other words, the EGPS Conjecture holds for sets of integers
with missing digits!
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An effective result

Theorem (Benli, Cesana, Dartyge, Dombrowsky, T., 2024)
Fix g ≥ 3, γ ∈ (0, 1), and a nonempty subset
D ( {0, ..., g − 1}. For all x sufficiently large, the number of
n ≤ x for which s(n) has all of its digits in base g restricted to
digits in D is O

(
x

e(log log x)γ

)
.
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How sharp is our bound?

Recall that s(p) = 1 for all primes p.

Then, if D contains 1, it follows that

#Ws,D(x) ≥ π(x) ∼
x

log x

as x→∞.

Thus, our result is optimal* for arbitrary g,D.

*In the sense that γ cannot be replaced by a constant strictly
greater than 1.
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Sums of proper divisors with many missing digits

Recall:

Theorem (Pollack, Pomerance, T., 2017)

Let ε→ 0 as x→∞. Suppose A is a set of at most x1/2+ε

positive integers. Then, as x→∞,

#{n ≤ x : s(n) ∈ A} = oε(x)

uniformly in A.

If we remove at least half of the possible digits, then the size of
this set of integers with missing digits is O(

√
x). Our 2017

result implies that the EGPS conjecture holds for this set.
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An application of Maynard’s work

Theorem (Benli, Cesana, Dartyge, Dombrowsky, T., 2024)
The function s(n) takes infinitely many values in WD.

Proof.

Recall that if p, q are distinct primes then s(pq) = p+q+1.
Earlier in this talk, we used this family of integers to show that
almost all odd numbers are contained in the image of s.
Thus, it is sufficient to show that a positive proportion of
integers with missing digits can be expressed as a sum of 1 plus
a sum of two primes. The rest of the proof follows ideas from
Maynard’s polynomial paper. Requires circle method, sieve
methods, etc.
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Summary

In summary:

Surprisingly little is known about s(n) after millennia of
study!

EGPS conjectured that s−1(A) has asymptotic density 0
when A has asymptotic density 0.

This has been confirmed for sets with specific structures
(e.g., sets of integers with missing digits) and for sets of
certain sizes (O(x1/2+ε)).

The EGPS conjecture is still open.

71 / 72

Lola Thompson Preimages of the sum of proper divisor function



Preimages of
the sum of

proper divisor
function

Lola
Thompson

Introduction

Image of s

Preimage of
s

Integers with
missing digits
Our results

Thank you!
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