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Abstract. In this paper we prove a number of theorems that determine the extent
to which the signs of the Hecke eigenvalues of an Eisenstein newform determine the
newform. We address this problem broadly and provide theorems of both individual and
statistical nature. Many of these results are Eisenstein series analogues of well-known
theorems for cusp forms. For instance, we determine how often the pth Fourier coefficients
of an Eisenstein newform begin with a fixed sequence of signs εp = {±1, 0}. Moreover,
we prove the following variant of the strong multiplicity-one theorem: an Eisenstein
newform is uniquely determined by the signs of its Hecke eigenvalues with respect to any
set of primes with density greater than 1/2.

1. Introduction

Many results in the theory of classical elliptic modular forms are concerned with study-
ing the extent to which a modular form is determined by its Fourier coefficients. In this
paper we focus our attention on the signs of the Fourier coefficients of Eisenstein series
with real coefficients and, in particular, those that are Eisenstein newforms. This is equiv-
alent to studying the Hecke eigenvalues of the newforms in question, as it is well-known
that the p-th Hecke eigenvalue of an Eisenstein newform is equal to its p-th Fourier co-
efficient. These Fourier coefficients are in turn given by the values of a variant of the
sum-of-divisors function, σ(n) :=

∑
d|n d. The variant that we consider introduces signed

terms, weighting each divisor of n by the values of certain Dirichlet characters. We exploit
properties of Dirichlet characters and the sum-of-divisors function in order to obtain gen-
eralizations of several well-known theorems for cusp forms. Owing to the explicit nature
of Eisenstein series, many of our results are “best possible”. We now develop the notation
necessary to describe our results in greater detail.

For a positive integer N , Dirichlet character χ and integer k ≥ 2, let Mk(N,χ) denote
the complex vector space of modular forms on Γ0(N) of weight k and character χ. Let
Ek(N,χ) (respectively Sk(N,χ)) denote the subspace of Eisenstein series (respectively
cusp forms). For any prime p, let Tp denote the pth Hecke operator. It is well-known
that Sk(N,χ) has a basis consisting of newforms, which are simultaneous eigenforms
for the algebra generated by {Tp : (p,N) = 1}, and their shifts by divisors of NM−1

[1, 12]. The strong multiplicity-one theorem shows that these newforms are uniquely
determined by their eigenvalues for all but finitely many of the operators {Tp : (p,N) = 1}.
Ramakrishnan [17] obtained an even stronger multiplicity-one theorem, showing that
newforms are uniquely determined by their eigenvalues with respect to the pth Hecke
operator for any set of primes with asymptotic density greater than 7/8.

Let f ∈ Sk(N,χ) be a newform, λf (p) the eigenvalue of f with respect to the Hecke
operator Tp and assume that all of the eigenvalues {λf (p)} are real. The sequence of signs
of the Hecke eigenvalues of f have been studied by a number of authors [10, 8, 9, 6, 11, 13].
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It follows from a classical theorem of Landau and an analysis of the Rankin-Selberg zeta
function of f that there are infinitely many primes for which λf (p) > 0 and infinitely
many for which λf (p) < 0 [10, page 173]. In analogy with the problem of determining the
least quadratic non-residue, one may consider the problem of determining the smallest
prime p for which λf (p) < 0 (or, more generally, the least integer n coprime to N for
which the eigenvalue λf (n) of f with respect to the Hecke operator Tn is negative). The
strongest result in this direction is due to Matomäki [13, Theorem 1], who has shown
that λf (n) < 0 for some integer n � (k2N)3/8. In a different direction, Kowalski, Lau,
Soundararajan and Wu [11, Theorem 3] considered an arbitrary sequence of signs {εp}
and obtained a lower bound for the proportion of newforms of Sk(N,χ) whose eigenvalue
sequence has signs coinciding with {εp} for all primes p ≤ x.

In his thesis [23], Weisinger developed a newform theory for the space Ek(N,χ). In this
paper we consider questions analogous to the ones above for newforms lying in Ek(N,χ).
Let E ∈ Ek(N,χ) be an Eisenstein newform whose Hecke eigenvalues {λE(p)} are all real.
We show (Corollary 3.2) that not only is λE(p) positive for infinitely many primes and
negative for infinitely many primes, but in fact we prove that the asymptotic density of
the set of positive integers n for which λE(n) < 0 is equal to 1/2. Using a classical result
of Burgess, we show (Theorem 4.1) that for any fixed ε > 0, λE(p) < 0 for some prime

p � N
1

4
√
e
+ε

. In one of our main results (Theorem 4.3), we consider a fixed sequence of
primes {p1, . . . , p`} and a fixed sequence of signs {εp1 , . . . , εp`} (where εpi ∈ {−1, 0, 1})
and determine an asymptotic for the number of newforms E ∈ Ek(N,χ) with N ≤ x for
which λE(pi) has sign εpi for i = 1, . . . , `.

In developing a newform theory for Ek(N,χ), Weisinger proved a strong multiplicity-
one theorem in analogy with the classical strong multiplicity-one theorem for cuspidal
newforms. This multiplicity-one theorem was later improved upon by Rajan [16], who
proved an analogue of Ramakrishnan’s refinement of the multiplicity-one theorem. Our
Theorem 5.1 is a further refinement of the strong multiplicity-one theorem and shows that
Eisenstein newforms are uniquely determined by their eigenvalues with respect to the pth
Hecke operator for any set of primes with density greater than 1/2. This theorem is in fact
best possible; it is easy to exhibit, via quadratic twists, Eisenstein newforms whose Hecke
eigenvalues coincide on a set of primes having density equal to 1/2. In Theorem 5.3, we
clarify the extent to which distinct newforms whose Hecke eigenvalues coincide on a set of
primes having density equal to 1/2 must arise from such a quadratic twisting construction.
In particular, we show that if E1, E2 are Eisenstein newforms whose Hecke eigenvalues
differ on a set of primes having density 1/2, then there exists a quadratic character θ
such that for all primes p with (p,N) = 1, the pth Hecke eigenvalues of E1 and E2 differ
by θ(p). We additionally show that a stronger mulitplicity-one result is true: Eisenstein
newforms are uniquely determined by the signs of their Hecke eigenvalues with respect
to any set of primes with density greater than 1/2. Here we adopt the convention that
the sign of a complex number z is equal to z

|z| . This complements a result of Matomäki

[13, Theorem 2], which shows that a cuspidal newform f of trivial character and without
complex multiplication is determined by the sign of λf (p) for any set of primes with
analytic density greater than 19/25.

The final section of this paper considers the problem of studying the signs of the Fourier
coefficients of Eisenstein series more broadly. We begin by determining the possible new-
form decompositions of an Eisenstein series whose Fourier coefficients are all rational
numbers (Theorem 6.6). We then show that every Eisenstein series with rational co-
efficients whose newform decomposition does not include the unique Eisenstein series
newform whose Fourier coefficients are all positive must have negative Fourier coefficients
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of arbitrarily large absolute value (Theorem 6.8). Intuitively, this result shows that one
cannot take Eisenstein series newforms having negative Fourier coefficients and cleverly
add them together so as to obtain a modular form whose Fourier coefficients are all non-
negative. As an immediate application of these results, consider a positive definite integral
quadratic form Q in an even number of variables. The theta series associated to Q can
be decomposed as the sum of a cusp form and an Eisenstein series and has Fourier coeffi-
cients rQ(n) equal to the number of ways that n is represented by Q. These representation
numbers are always non-negative. As it is well-known that standard eigenvalue estimates
imply that the Fourier coefficients of an Eisenstein series will eventually dominate those
of a cusp form, Theorem 6.8 provides insight into the possible newform decompositions
of the “Eisenstein part” of the theta series of Q.

2. Preliminaries

Let N1, N2 be positive integers and χ1, χ2 be Dirichlet characters modulo N1, N2. For
a positive integer k ≥ 2, we define the following variant of the sum-of-divisors function:

(2.1) σk−1χ1,χ2
(n) =

∑
d|n

χ1(n/d)χ2(d)dk−1.

Associated to the triple (χ1, χ2, k) is a function

(2.2) E(χ1, χ2, k)(z) =
δ(χ1)

2
L(1− k, χ2) +

∑
n≥1

σk−1χ1,χ2
(n)qn, q = e2πiz,

where L(s, χ2) is the Dirichlet L-function of χ2 and δ(χ1) = 1 if χ1 is principal and is equal
to 0 otherwise. Assume that we are not in the situation that χ1, χ2 are both principal
characters modulo 1 and k = 2. Then it is well-known that if χ1χ2(−1) = (−1)k then
E(χ1, χ2, k) is an Eisenstein series lying in Ek(N1N2, χ1χ2).

In his thesis, Weisinger [23] developed a newform theory for the space Ek(N,χ) of
Eisenstein series. This theory was analogous to the one developed by Atkin and Lehner
[1] for cusp forms and which was later extended by Li [12]. In this theory, the newforms
of Ek(N,χ) are functions E(χ1, χ2, k) for which N = N1N2, χ = χ1χ2 and χ1, χ2 are
both primitive. In particular, Weisinger showed that Ek(N,χ) has a basis consisting of
Eisenstein newforms of level M | N and their shifts by divisors of NM−1. It is easy
to check that if E(χ1, χ2, k) is an Eisenstein newform then it is an eigenform for all of
the Hecke operators Tp. If p is a prime not dividing N then, by explicitly computing the
action of the Hecke operator Tp on E(χ1, χ2, k), one sees that the eigenvalue of E(χ1, χ2, k)
with respect to Tp is equal to σk−1χ1,χ2

(p). Weisinger additionally showed that an Eisenstein
newform is uniquely determined by its Hecke eigenvalues in the sense that two newforms
whose eigenvalue with respect to the Hecke operator Tp agree for all but finitely many
primes p must, in fact, be equal.

As we are interested in studying the signs of the Fourier coefficients of Eisenstein
newforms, we note that an immediate consequence of (2.1) is that Ek(χ1, χ2, k) has Fourier
coefficients lying in the field R of real numbers only if χ1, χ2 are quadratic Dirichlet
characters. Therefore, throughout the remainder of this paper all functions σk−1χ1,χ2

will be
associated to quadratic Dirichlet characters unless explicitly stated otherwise.

3. The frequency of negative Fourier coefficients

In this section, we answer some basic statistical questions about the sign of σk−1χ1,χ2
using

techniques from analytic number theory. First, we prove an elementary lemma, which
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allows us to reformulate our questions about σk−1χ1,χ2
into questions about the behavior of

χ2.

Lemma 3.1. If (n,N) = 1, then the sign of σk−1χ1,χ2
(n) is completely determined by the

behavior of χ2(n).

Proof. Peeling off the d = n term in the definition of σk−1χ1,χ2
(n), we have

σk−1χ1,χ2
(n) =

∑
d|n

χ1(n/d)χ2(d)dk−1(3.1)

= χ2(n)nk−1 +
∑
d|n
d<n

χ1(n/d)χ2(d)dk−1.(3.2)

Factoring nk−1 out of the sum in (3.2) yields

χ2(n)nk−1 + nk−1
∑
d|n
d<n

χ1(n/d)χ2(d)

(n/d)k−1
= nk−1

χ2(n) +
∑
d|n
d<n

χ1(n/d)χ2(d)

(n/d)k−1

 .(3.3)

Since |χ1(d)|, |χ2(d)| ≤ 1 for all d ∈ Z+, we have∑
d|n
d<n

χ1(n/d)χ2(d)

(n/d)k−1
≤
∑
d|n
d<n

1

(n/d)k−1

≤
∑
m≥2

1

mk−1

= ζ(k − 1)− 1

< 1.

Thus, the χ2(n) term dominates in (3.3), so we may conclude that sgn σk−1χ1,χ2
(n) = χ2(n).

�

It follows from the definition of the Dirichlet character that χ2(n) = −1 half of the time
and χ2(n) = 1 half of the time. This allows us to deduce a simple corollary from Lemma
3.1.

Corollary 3.2. For infinitely many integers n, we have

σk−1χ1,χ2
(n) > 0.

Similarly, we have
σk−1χ1,χ2

(n) < 0

for infinitely many n. In fact, we have

lim
x→∞

1

x
·#{n ≤ x : (n,N) = 1, σk−1χ1,χ2

(n) > 0} =
1

2
and

lim
x→∞

1

x
·#{n ≤ x : (n,N) = 1, σk−1χ1,χ2

(n) < 0} =
1

2
.

Remark. Although Corollary 3.2 shows that, asymptotically, the sign of σk−1χ1,χ2
is positive

as often as it is negative, it turns out when restricted to initial intervals of primes, σk−1χ1,χ2

is negative more often than it is positive. This phenomenon is closely related to the
well-studied prime number races in which certain arithmetic progressions can be shown to
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contain an unexpected number of primes less than some fixed x. Let x ≤ X and consider
the character sum

(3.4)
∑
p≤ex

χ2(p).

Lemma 3.1 shows that there are more primes in the interval [1, ex] for which σk−1χ1,χ2
(p) < 0

than there are for which σk−1χ1,χ2
(p) > 0 if and only if (3.4) is negative. Building on the

seminal work of Rubinstein and Sarnak [20], Fiorilli and Martin [5, Section 3.6] have
shown that under the assumption of GRH and LI (the linear independence hypothesis),
the natural density of the set of x such that the sum in (3.4) is negative exists and is

equal to
(

1
2

+ (1 + o(1))
√

2
π log(N2)

)
. In particular this shows that there is always a bias

towards σk−1χ1,χ2
being negative, but that this bias dissipates as N2 →∞.

4. The first negative Fourier coefficient

In addition to determining how often σk−1χ1,χ2
takes on a particular sign, one could also

describe the location of the first sign change. For any fixed pair of characters, it is not
difficult to obtain an upper bound for when the first sign change occurs; doing so is a
straightforward application of Burgess’ estimates (see, in particular, [14, eq. (1.22)]).

Theorem 4.1. Let p0 be the first integer co-prime to N corresponding to the first sign
change of σk−1χ1,χ2

. Then, for any fixed ε > 0, we have

p0 �ε N
1

4
√
e
+ε
.

Proof. Let χ2 be a quadratic character modulo N2. From Lemma 3.1, we can write
sgn σk−1χ1,χ2

(n) =
∏

p`||n χ2(p)
`. Since χ2 is a multiplicative function, σk−1χ1,χ2

(n) will first be
negative at a prime; i.e., there exists a prime p0 for which

sgn σk−1χ1,χ2
(p0) = χ2(p0) = −1,

where sgn σk−1χ1,χ2
(p) = χ2(p) = 1 for all p < p0. If N = N1N2, then χ2 induces a qua-

dratic character ψ2 (mod N). The result follows from applying the Burgess bound for the
character ψ2 with d = p0. �

Instead of fixing χ1 and χ2, we could consider the more difficult problem of determining
when the first sign change occurs on average as we vary over χ1, χ2 (and remove the
condition that (n,N) = 1). Our work for the remainder of the section will be to provide
evidence for what this average should be. Along the way, we will prove an analogue of
Kowalski, Lau, Soundararajan and Wu’s theorem [11] on the frequency with which the
signs of σk−1χ1,χ2

agree with a fixed sequence of signs.
Throughout this section, let D,D1, D2 represent fundamental discriminants correspond-

ing to real quadratic fields. We will need the following bound for the count of fundamental
discriminants with |D| ≤ x, which can be obtained via a standard sieving argument:

#{D : |D| ≤ x} ∼ 1

ζ(2)
· x.(4.1)

We will also make use of the following lemma.

Lemma 4.2. Let P(ε, p) denote the proportion of fundamental discriminants D with(
D
p

)
= ε. Then, we have
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P(ε, p) =


p

2p+2
if ε = 1

p
2p+2

if ε = −1
1
p+1

if ε = 0.

Proof. First, consider the case where p is odd. Since the odd part of D must be square-
free, each D must lie in one of p2 − 1 residue classes (mod p2). Moreover, the same
sieving argument that allows us to count quadratic discriminants shows that the D’s are

equidistributed among the residue classes (mod p2). Now,
(
D
p

)
= 0 if and only if p | D,

which will occur in precisely p−1 of these residue classes. The remaining p(p−1) residue
classes are split equally between +1 and −1. In the case where p = 2, we observe that the
fundamental discriminants must lie in the residue classes 1, 5, 8, 9, 12, 13 (mod 16) and
the values 0,±1 all occur with the same likelihood. �

Theorem 4.3. Let D = {(D1, D2) : |D1D2| ≤ x}. Given a sequence of signs εp1 , ..., εp`
with εpi ∈ {0,±1} for 1 ≤ i ≤ `, we have

1

|D|
#{(D1, D2) ∈ D : sgn σk−1χ1,χ2

(pi) = εpi , 1 ≤ i ≤ `}

→
( ∏

εpi=0
1≤i≤`

1

(pi + 1)2

)( ∏
εpi 6=0
1≤i≤`

pi(pi + 2)

2(pi + 1)2

)
,

as x→∞.

Proof. Since

σk−1χ1,χ2
(p) =

∑
d|p

χ1(p/d)χ2(d)dk−1 = χ1(p) + χ2(p)p
k−1,

we have

sgn σk−1χ1,χ2
(p) =

{
χ1(p) if p | D2,

χ2(p) if p - D2.

Let P = {pi : pi | D2, 1 ≤ i ≤ `} and let Q = {p1, ..., p`} \ P . For each fixed P ,Q, we
will count pairs χ1, χ2 with χ1(p) = εp for all p ∈ P and χ2(p) = εp for all p ∈ Q, subject

to the conditions that
∏

p∈P p | D2 and
(

D2∏
p∈P p

, p1 · · · p`
)

= 1. Since P
⊔
Q = {p1, ..., p`}

then our choice of P completely determines our choice of Q. As a result, estimating
the number of pairs (D1, D2) ∈ D with sgn σk−1χ1,χ2

(pi) = εpi amounts to estimating the
following sum: ∑

P⊆{p1,...,p`}
εp 6=0 if p 6∈P

∑
|D1|≤x
χ1(p)=εp
if p∈P

∑
|D2|≤x/|D1|
χ2(p)=εp
for p∈Q

χ2(p)=0 if p∈P

1.(4.2)

We can imitate the proof of [15, (5.3)] to estimate the inner sum for (4.2) using the
probabilities obtained in Lemma 4.2 along with an important result of Wood [24, Theorem
1.3], which tells us that the probabilities P(εp, p) are independent. This allows us to use
(4.1) to re-write (4.2) (ignoring the error term, which is negligible relative to the size of
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the main term) as

x

ζ(2)

∑
P⊆{p1,...,p`}

εp 6=0
if p/∈P

(∏
p6∈P

P(εp, p)

)(∏
p∈P

1

p+ 1

) ∑
|D1|≤x
χ1(p)=εp
for p∈P

1

|D1|
.(4.3)

We can use partial summation to estimate the inner sum, takingA(x) =
∑
|D1|≤x,χ1(p)=εp

1

and f(x) = 1
x
. For the sake of brevity, let C = 1

ζ(2)

∏
p∈P P(εp, p). By partial summation,

we have ∑
|D1|≤x
χ1(p)=εp
for p∈P

1

|D1|
= (A(x)f(x)− A(1)f(1))−

∫ x

1

A(t)f ′(t)dt

∼ C log x.

Thus, we can re-write (4.3) in the following manner:

x log x

(ζ(2))2

(∏̀
i=1

P(εpi , pi)

) ∑
P⊆{p1,...,p`}
εp=0⇒p∈P

(∏
p∈P

1

p+ 1

)
.(4.4)

To estimate the final sum, let P0 = {p : εp = 0} and let P1 = P \ P0. Then∑
P⊆{p1,...,p`}
εp=0⇒p∈P

(∏
p∈P

1

p+ 1

)
=

∑
P0⊆P⊆{p1,...,p`}

(∏
p∈P

1

p+ 1

)

=
∑

P1⊆{p1,...,p`}\P0

(∏
p∈P0

1

p+ 1

)(∏
p∈P1

1

p+ 1

)

=

(∏
p∈P0

1

p+ 1

) ∑
P1⊆{p1,...,p`}\P0

(∏
p∈P1

1

p+ 1

)

=

(∏
p∈P0

1

p+ 1

)(∏
p∈P1

(
1 +

1

p+ 1

))

=

 ∏
εpi=0
1≤i≤`

1

pi + 1


 ∏

εpi 6=0
1≤i≤`

(
1 +

1

pi + 1

) .

Since the number of fundamental discriminants with |D| ≤ x is asymptotic to x/ζ(2) from
(4.1), then the number of pairs (D1, D2) with |D1D2| ≤ x is asymptotic to (x log x)/ζ(2)2.
Our result follows after dividing (4.4) by |D| ∼ x log x

ζ(2)2
and applying Lemma 4.2. �

We can use Theorem 4.3 to give the following conjecture for when, on average, the first
negative value of sgn(σk−1χ1,χ2

(pi)) occurs.

Conjecture 4.4. Let η(D1, D2) represent the smallest pi for which sgn(σk−1χ1,χ2
(pi)) = −1.

As x→∞, one would expect ∑
|D1D2|≤x η(D1, D2)∑

|D1D2|≤x 1
→ θ,
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where

θ :=
∞∑
`=1

p2`(p` + 2)

2(p` + 1)2

`−1∏
i=1

2 + pi(pi + 2)

2(pi + 1)2
.

Numerically,

θ = 3.9750223902667539847734759105175510246019355513991....

Remark. Heuristically, one would expect∑
|D1D2|≤x η(D1, D2)∑

|D1D2|≤x 1
=
∞∑
`=1

p` · Prob (η(D1, D2) = p`)

=
∞∑
`=1

p` · Prob(εp` = −1) ·
`−1∏
i=1

Prob(εpi = 0 or 1)

=
∞∑
`=1

p` ·
p`(p` + 2)

2(p` + 1)2
·
`−1∏
i=1

(
1

(pi + 1)2
+
pi(pi + 2)

2(pi + 1)2

)
,

where the final equality follows from Theorem 4.3. The conjectural result can be obtained
after some simplification. It may be possible to make this argument rigorous using a large
sieve argument (see, for example, [15] or [4]).

5. A strong multiplicity-one theorem and applications

In this section, we prove a strong multiplicity-one theorem for Eisenstein series new-
forms and provide several applications that clarify the extent to which the sign of the
Hecke eigenvalues of an Eisenstein series newform determine the newform. We note that
while the results of this section are stated for classical elliptic Eisenstein series, all of
our proofs hold, mutatis mutandis, for adelic Hilbert modular Eisenstein series. We have
chosen to state our results for classical elliptic Eisenstein series in order to maintain the
cohesion of the paper and because we feel that the technicalities needed to define adelic
Hilbert modular forms would obscure the ideas underlying our proofs. We will simply
mention that all of the relevant newform theory for Hilbert modular forms was proven
by Shemanske and Walling [21] (for cusp forms) and Atwill and the first author [2] (for
Eisenstein series).

Throughout the remainder of this paper we adopt the convention that if f ∈Mk(N,χ)
is a modular form then the nth Fourier coefficient of f is denoted af (n). In the event that
f is a normalized Hecke eigenform, we note that the eigenvalue of f with respect to the
Hecke operator Tn (where (n,N) = 1) is equal to af (n).

We begin by proving a strong multiplicity-one theorem which shows that an Eisenstein
series newform is uniquely determined by its Hecke eigenvalues for any set of primes
having density δ > 1/2.

Theorem 5.1. Let f ∈ Ek(N,χf ) and g ∈ Ek′(N ′, χg) be newforms such that

af (p) = ag(p)

for a set S of primes with δ(S) > 1/2. Then k = k′, N = N ′, χf = χg and f = g.

Remark. Theorem 5.1 generalizes a result of Atwill and the first author [2, Theorem 3.6]
which, working in the Hilbert modular setting, considered the special case in which k = k′

and χf = χg.

Our proof of Theorem 5.1 will make use of the following lemma.
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Lemma 5.2. Let χ1, χ2, ψ1, ψ2 be Dirichlet characters modulo M and c be a nonzero
complex number. There exists a constant p0 such that if p > p0 is prime and

χ1(p) + χ2(p)p
k−1 = c

(
ψ1(p) + ψ2(p)p

k−1) ,
then χ1(p) = cψ1(p) and χ2(p) = cψ2(p).

Proof. Suppose that p - M and χ1(p) + χ2(p)p
k−1 = c

(
ψ1(p) + ψ2(p)p

k−1). If χ2(p) =
cψ2(p) then χ1(p) = cψ1(p). Otherwise, we have

(5.1) pk−1 =
χ1(p)− cψ1(p)

cψ2(p)− χ2(p)
.

Because c is fixed, the absolute value of the right hand side of (5.1) can be bounded
independently of p, which leads to a contradiction for all sufficiently large primes p. �

We now prove Theorem 5.1.

Proof. Write f = E(χ1, χ2, k) and g = E(ψ1, ψ2, k
′). We begin by proving that k = k′.

Suppose that k 6= k′ and without loss generality that k > k′. Because af (p) = σk−1χ1,χ2
(p) =

χ1(p) + χ2(p)p
k−1, it is clear that there exists εf ∈ (0, 1/2) such that for all sufficiently

large primes p, |af (p)| > pk−1−εf . Similarly, there exists εg ∈ (0, 1/2) such that for all
sufficiently large primes p, |ag(p)| < pk

′−1+εg . As δ(S) > 1/2, we can select a prime p in
S such that af (p) = ag(p), |af (p)| > pk−1−εf and |ag(p)| < pk

′−1+εg . It follows that for
such a prime p, pk

′−1+εg > pk−1−εf . On the other hand it is easy to show that k ≥ k′ + 1
implies pk−1−εf > pk

′−1+εg . This contradiction proves that k = k′.
We now show that χ1 = ψ1 and χ2 = ψ2. Denote by χ′1, χ

′
2, ψ

′
1, ψ

′
2 the induced Dirichlet

characters modulo NN ′. Let p1, . . . , pϕ(NN ′) represent the residue classes of (Z/NN ′Z)×

and assume that all of the primes pi are large enough so that Lemma 5.2 holds with
c = 1. If af (pi) = ag(pi) then, by Lemma 5.2, χ′1(pi) = ψ′1(pi) and χ′2(pi) = ψ′2(pi). If
this occurs for s values of i, then the density of primes p for which χ1(p) + χ2(p)p

k−1 =

ψ1(p)+ψ2(p)p
k−1 is at most s

ϕ(NN ′)
. It follows that this occurs for more than ϕ(NN ′)

2
values

of i. The orthogonality relations now show that χ′1ψ̄
′
1 is the principal character, hence

the primitive characters χ1, ψ1 inducing χ′1, ψ
′
1 are equal as well. An identical argument

shows that χ2 = ψ2.
Having shown that χ1 = ψ1 and χ2 = ψ2 we observe that N = cond(χ1) · cond(χ2) =

cond(ψ1) · cond(ψ2) = N ′ and χf = χ1χ2 = ψ1ψ2 = χg, hence f = E(χ1, χ2, k) =
E(ψ1, ψ2, k

′) = g. �

It is easy to see that Theorem 5.1 is best possible in the sense that there exist distinct
newforms whose Hecke eigenvalues differ at a set of primes having density equal to 1/2.
Examples of this form may be constructed by considering a newform f ∈ Ek(N,χf ) and
its twist by a quadratic character of conductor relatively prime to N (the fact that such a
character twist will still be a newform follows from the results of [2, Section 5]). In light
of this, it is natural to ask if twisting by a quadratic character is the only way produce
examples of this form. We address this question in the following theorem.

Theorem 5.3. Let f ∈ Ek(N,χf ) and g ∈ Ek′(N ′, χg) be distinct newforms such that

af (p) = ag(p)

for a set S of primes with δ(S) = 1/2. Then there exists a quadratic character θ such
that

af (p) = θ(p)ag(p)

for all primes p - NN ′.
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Proof. By Lemma 5.2, there exists a subset S ′ of S such that δ(S ′) = 1/2 and, for all
primes p ∈ S ′, we have χ1(p) = ψ1(p) and χ2(p) = ψ2(p). Let i ∈ {1, 2} and consider
θi = χiψ̄i. From above, θi(n) = 1 for 1/2 of the elements in (Z/NN ′Z)×. If either θ1 or
θ2 is principal, then our hypothesis that af (p) = ag(p) implies f = g, which would be
a contradiction. Otherwise the orthogonality relations show that θi(n) = −1 whenever
θi(n) 6= 1. Therefore, θ1 and θ2 are quadratic characters. Moreover, it must be the case
that θ1 = θ2, since θ1(p) = 1 = θ2(p) for all primes p ∈ S ′, hence both must assume the
value −1 on all primes p - NN ′ that lie in the complement of S ′. The theorem follows. �

Having shown that an Eisenstein series newform is uniquely determined by its Hecke
eigenvalues for any set of primes with density greater than 1/2, we now show that in fact
a stronger statement is true: an Eisenstein series newform is uniquely determined by the
signs of Hecke eigenvalues for any set of primes with density greater than 1/2. Here, as
usual, we adopt the convention that the sign sgn(z) of a nonzero complex number z is
equal to z

|z| (i.e. sgn(z) is the point on the complex unit circle closest to z). This result

complements Theorem 4 of Kowalski, Lau, Soundararajan and Wu [11], which shows that
a similar result holds for cuspidal newforms.

Theorem 5.4. Let f ∈ Ek(N,χf ) and g ∈ Ek(N ′, χg) be newforms such that

sgn(af (p)) = sgn(ag(p))

for a set S of primes with δ(S) > 1/2. Then N = N ′, χf = χg and f = g.

Remark. As was the case with Theorem 5.1, our Theorem 5.4 is best possible. Indeed,
if f ∈ Ek(N,χf ) is a newform and θ is a primitive quadratic Dirichlet character whose
conductor is relatively prime to N , then the twist fθ of f by θ will be a newform whose
Hecke eigenvalues have the same sign as those of f for a set of primes of density equal to
1/2 (the set of primes p for which θ(p) = 1).

Our proof of Theorem 5.4 will make use of the following lemma, which follows imme-
diately from the case where m = 2.

Lemma 5.5. Let z1, . . . , zm be distinct complex numbers lying on the unit circle. Then
there exists an ε > 0 such that for any positive real number r and i 6= j we have

|rzi − zj| > ε.

We now prove Theorem 5.4.

Proof. Write f = E(χ1, χ2, k) and g = E(ψ1, ψ2, k
′). Let n1, . . . , nϕ(NN ′) represent the

residue classes of (Z/NN ′Z)× and ε be the constant from Lemma 5.5 applied to the set

{χi(nj) : i ∈ {1, 2}, 1 ≤ j ≤ ϕ(NN ′)}
⋃
{ψi(nj) : i ∈ {1, 2}, 1 ≤ j ≤ ϕ(NN ′)}.

Let S ′ ⊂ S be the subset of S consisting of primes p for which 2p1−k < ε and p > NN ′.
Note that δ(S ′) = δ(S) > 1/2.

For each prime p ∈ S ′, define a positive real number εp :=
af (p)

ag(p)
=
|af (p)|
|ag(p)| . We claim that

εp = 1 for all primes p ∈ S ′. If εp 6= 1 for some prime p, then by interchanging f and g
(if necessary) we may assume εp < 1. By definition of εp we have,

χ1(p) + χ2(p)p
k−1 = εpψ1(p) + εpψ2(p)p

k−1.
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From this identity, it follows that

|εpψ2(p)− χ2(p)| =
|χ1(p)− εpψ1(p)|

pk−1

≤ 1 + εp
pk−1

< 2p1−k

< ε.

This contradicts Lemma 5.5, hence εp = 1. Theorem 5.4 now follows from Theorem
5.1. �

We conclude this section by proving that up to twisting by a Dirichlet character, an
Eisenstein series newform is determined by the nth powers of its Hecke eigenvalues for any
set of primes with density greater than 1/2.

Theorem 5.6. Let f ∈ Ek(N,χf ) and g ∈ Ek′(N ′, χg) be newforms such that for some
integer n ≥ 2,

af (p)
n = ag(p)

n

holds for a set S of primes with δ(S) > 1/2. Then k = k′ and there exists a Dirichlet
character θ with cond(θ) | NN ′ such that χf = θ2χg and

af (p) = θ(p)ag(p)

for all primes p - NN ′.

Proof. As before, write f = E(χ1, χ2, k) and g = E(ψ1, ψ2, k
′). The fact that k = k′ can

be proven using the ideas employed in the proof of the corresponding result in Theorem
5.1. We therefore omit this proof.

If p - NN ′ then assign, for each prime p ∈ S, the nth root of unity εp such that
af (p) = εpag(p). By Lemma 5.2, there exists a subset S ′ of S such that δ(S ′) = δ(S) and,
for all p ∈ S ′, we have χ1(p) = εpψ1(p) and χ2(p) = εpψ2(p).

Let θ = χ1ψ̄1 and consider the twist gθ of g by θ. Since gθ is a simultaneous Hecke
eigenform for all primes p - NN ′, there exists a newform equivalent to gθ. It follows from
Theorem 5.1 that this newform is f , hence χf = θ2χg. Let p - NN ′ be prime. Then
computing the pth Hecke eigenvalues of gθ and f shows that

θ(p)(ψ1(p) + ψ2(p)p
k−1) = χ1(p) + χ2(p)p

k−1,

which finishes our proof. �

The following is an immediate consequence of Theorem 5.6.

Corollary 5.7. Let the notation be as in Theorem 5.6. If χf = χg, then θ is quadratic
and af (p)

2 = ag(p)
2 for all primes p - NN ′.

6. Eisenstein series with rational and non-negative Fourier coefficients

6.1. The field of Fourier coefficients of an Eisenstein newform. Let f ∈ Sk(N,χ)
be a cuspidal newform, let Q(f) be the field generated by its Fourier coefficients and recall
that Q(f) is either a totally real number field or a CM field (that is, a totally imaginary
quadratic extension of a totally real number field) [19, Proposition 3.2]. We shall show
that the same is true for the field of Fourier coefficients of an Eisenstein newform. Our
proof will rely on the following two basic properties of CM fields, the second of which is
an easy consequence of the first.
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Lemma 6.1. [22, Proposition 5.11] Let F be a number field and ρ ∈ Aut(C) be complex
conjugation. Then F is a CM field if and only if

(i) ρ induces a nontrivial automorphism of F .
(ii) Every isomorphism σ of F into C commutes with ρ.

Lemma 6.2. Let F be a CM field and F ′ be a subfield of F . Then F ′ is either a totally
real number field or a CM field.

Proposition 6.3. Let E = E(χ1, χ2, k) ∈ Ek(N,χ) be a newform and Q(E) be the field
obtained by adjoining to Q all of the Fourier coefficients of E.

(i) Q(E) has finite degree over Q.
(ii) Q(E) is a Galois extension of Q with abelian Galois group.

(iii) Q(E) contains χ(n) for all n ≥ 1.
(iv) Q(E) is either a totally real number field or a CM field.

Proof. The formula for the Fourier coefficients of Eχ1,χ2 makes it clear that Q(E) is
contained in Q(ζN). This proves the first two assertions. Assertion (iii) follows from the
identity aE(p)2 = aE(p2) + χ(p)pk−1 and the fact that every residue class of (Z/NZ)× is
represented by a prime. We have already noted that Q(E) is contained in a cyclotomic
field. If the latter field is totally real (hence equal to Q) then Q(E) is totally real as
well. Otherwise this cyclotomic field is a CM field and assertion (iv) follows from Lemma
6.2. �

The following is an immediate consequence of Proposition 6.3.

Proposition 6.4. Suppose that a newform E ∈ Ek(N,χ) has rational Fourier coefficients
and is not identically zero. Then χ is either trivial or quadratic.

Proof. It is clear that for such an E we have Q(E) = Q. Proposition 6.3 now shows that
χ must be real-valued. The proof follows. �

Remark. An alternative proof of Proposition 6.4 can be obtained by arguing that the
pth Fourier coefficient aE(p) = χ1(p) + χ2(p)p

k−1 of E(χ1, χ2, k) is rational if and only if
both χ1(p) and χ2(p) are rational (equivalently, aE(p) is a real number if and only if χ1(p)
and χ2(p) are real numbers and thus lie in the set {0,±1}). The proof then follows from
the fact that χ = χ1χ2.

Our next goal is to extend Proposition 6.4 to arbitrary Eisenstein series. Before doing
so we require some terminology.

Let σ ∈ Aut(C) and χ be a character on a finite abelian group G. We will denote by
χσ the character

χσ : G→ C×, χσ(g) = σ(χ(g)).

It is well-known that, given an Eisenstein series f ∈ Ek(N,χ) and σ ∈ Aut(C), there
exists an Eisenstein series fσ ∈ Ek(N,χσ) such that afσ(n) = σ(af (n)) for all n ≥ 0.

Lemma 6.5. Let σ ∈ Aut(C) and f ∈ Ek(N,χ) be a newform. Then fσ ∈ Ek(N,χσ) is
a newform.

Proof. It is easy to see that if f = E(χ1, χ2, k) then fσ = E(χσ1 , χ
σ
2 , k):
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aE(χ1,χ2,k)σ(n) = σ(aE(χ1,χ2,k)(n)) = σ

∑
d|n

χ1(n/d)χ2(d)dk−1


=
∑
d|n

χσ1 (n/d)χσ2 (d)dk−1

= aE(χσ1 ,χ
σ
2 ,k)

(n).

�

Let f ∈ Ek(N,χ) be a newform with field of Fourier coefficients Q(f) and let G =
Gal(Q(f)/Q). Given α ∈ Q(f), we define the trace Tr(αf) of αf as

Tr(αf) =
∑
σ∈G

σ(α)fσ.

It follows immediately from the definition that the Fourier coefficients of Tr(αf) are
rational numbers. We also remark that if Q(f) 6= Q then Tr(αf) ∈ Ek(N,χ) if and only
if χ is real-valued (otherwise Tr(αf) simply lies in the larger space Ek(Γ1(N))).

Theorem 6.6. If E ∈ Ek(N,χ) has rational Fourier coefficients and is not identically
zero, then χ is either trivial or quadratic. Moreover, E can be written uniquely as a sum of
shifts of traces of newforms in Ek(N,χ) and rational multiples of newforms E(χ1, χ2, k) ∈
Ek(N,χ), where χ1 and χ2 are real-valued Dirichlet characters.

Proof. Fix an Eisenstein series E ∈ Ek(N,χ) with rational Fourier coefficients. Then E
has a unique decomposition

(6.1) E =
r∑
i=1

ci (Ei | Bdi)

as a linear combination of shifts of newforms. Here the ci are nonzero complex numbers,
the di are divisors of N and Ei = E(χi,1, χi,2, k) is a newform of level N/di and character
χ.

Consider one of the summands ci (Ei | Bdi) in equation (6.1).
Suppose first that Ei has rational Fourier coefficients. This is equivalent to assuming

that χi,1 and χi,2 are real-valued. In this case if σ ∈ Aut(C) then Eσ
i = Ei, hence

(Ei | Bdi) = (Eσ
i | Bdi). The uniqueness of the decomposition in equation (6.1) shows

that σ(ci) = ci. Since σ was an arbitrary element of Aut(C), we conclude that ci ∈ Q.
Now suppose that Ei does not have all rational Fourier coefficients or equivalently, χi,1

and χi,2 are not both real-valued and Q(Ei) is a nontrivial extension of Q. By Proposition
6.3, the field Q(Ei) is a Galois extension of Q. Let F be the compositum of the fields
Q(Ei) as i ranges over 1, . . . , r and let G be the Galois group of F over Q.

We claim that ci (which a priori is only known to be a nonzero complex number) is
an element of Q(Ei). Indeed, if τ ∈ Aut(C/Q(Ei)), then Eτ

i = Ei. That τ(ci) = ci now
follows from the uniqueness of the decomposition in equation (6.1).

Note that, if σ ∈ G, then Eσ = E ∈ Ek(N,χ) because the Fourier coefficients of E are
rational numbers. On the other hand Eσ =

∑r
i=1 σ(ci) (Eσ

i | Bdi), hence Eσ
i ∈ Ek(N,χ)

for i = 1, . . . , r. It follows that χσ = χ for all σ ∈ G. We therefore conclude that χ is
real-valued. Because the coefficients of Ei are not all rational numbers, there exists σ ∈ G
such that Eσ

i 6= Ei. The uniqueness of the representation of E as a linear combination of
shifts of newforms shows that there exists j ∈ 1, . . . , r such that Eσ

i = Ej and σ(ci) = cj.
It follows that the shift by Bdi of Tr(ciEi) appears in equation (6.1). �
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6.2. Eisenstein series with non-negative Fourier coefficients. In light of Lemma
3.1, it is clear that all of the Fourier coefficients of E(χ0, χ, k) are non-negative rational
numbers. Standard estimates for the growth of the Fourier coefficients of Eisenstein
series now imply that one may construct an Eisenstein series with non-negative Fourier
coefficients by choosing an arbitrary element of Ek(N,χ) with rational Fourier coefficients
and adding to it a sufficiently large multiple of E(χ0, χ, k). The main result of this section
is that, up to shifting by the Bd operator, all Eisenstein series in Ek(N,χ) with non-
negative, rational Fourier coefficients arise in this manner. Our proof will make use of the
following easy lemma.

Lemma 6.7. Let ψ1, . . . , ψm be non-principal Dirichlet characters whose moduli all divide
a positive integer N ≥ 2 and c1, . . . , cm be nonzero complex numbers so that f(n) :=
c1ψ1(n)+ · · ·+cmψm(n) has its image lying in the rational numbers. If f is not identically
zero then there exist infinitely many primes p such that f(p) < 0.

Proof. By the orthogonality relations we know that
∑N

n=1 ciψi(n) = 0 for i = 1, . . . ,m,

hence
∑N

n=1 f(n) = 0. It follows that if f is not identically zero then f(n) < 0 for some
n ∈ {1, . . . , N} and, therefore, for every prime p ≡ n (mod N) as well. �

Theorem 6.8. Let E ∈ Ek(N,χ) be a nonzero Eisenstein series with rational Fourier
coefficients and suppose that no shift of E(χ0, χ, k) appears in the newform decomposition
of E. Then E possesses negative Fourier coefficients of arbitrarily large absolute value.

Proof. Write E as a linear combination of shifts of newforms of level dividing N :

(6.2) E =
m∑
i=1

ci (Ei | Bdi) .

Consider first the special case in which di = 1 for i = 1, . . . ,m. In this case, there exist
Dirichlet characters χi1, χ

i
2 (i = 1, . . . ,m) and complex numbers c1, . . . , cm such that:

aE(n) = c1σ
k−1
χ1
1,χ

1
2
(n) + · · ·+ cmσ

k−1
χm1 ,χ

m
2

(n).

If p is prime then σk−1χ1,χ2
(p) = χ1(p) +χ2(p)p

k−1, hence aE(p) = f1(p) + f2(p)p
k−1 where

f1(n) = c1χ
1
1(n) + · · · + cmχ

m
1 (n) and f2(n) = c1χ

1
2(n) + · · · + cmχ

m
2 (n). By the linear

independence of characters, there exists a prime q such that f2(q) 6= 0. It now follows from
Lemma 6.7 that there are infinitely many primes p such that f2(p) < 0, and consequently
that aE(p) < 0 for infinitely many primes. The relation aE(p) = f1(p) + f2(p)p

k−1 implies
that |aE(p)| → ∞ as p→∞, finishing our proof in this case.

We now consider the general case. Let d = min{di : 1 ≤ i ≤ m}. Then there exists an
Eisenstein series E ′ such that E ′ | Bd appears in (6.2) and is maximal in the sense that
the newform decomposition of E −E ′ | Bd contains no shifts by the Bd operator. By the
previous paragraph, there exist infinitely many primes p such that aE′(p) < 0. By equation
(6.2) and the definition of E ′, for all but finitely many primes we have aE(dp) = aE′(p),
finishing the proof. �
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