
SYSTOLES OF ARITHMETIC HYPERBOLIC SURFACES AND 3–MANIFOLDS

BENJAMIN LINOWITZ, D. B. MCREYNOLDS, PAUL POLLACK, AND LOLA THOMPSON

ABSTRACT. Our main result is that for any positive real number x0, the set of commensurability classes
of arithmetic hyperbolic 2– or 3–manifolds with fixed invariant trace field k and systole bounded below
by x0 has density one within the set of all commensurability classes of arithmetic hyperbolic 2– or
3–manifolds with invariant trace field k. The proof relies upon bounds for the absolute logarithmic
Weil height of algebraic integers due to Silverman, Brindza and Hajdu, as well as precise estimates
for the number of rational quaternion algebras not admitting embeddings of any quadratic field having
small discriminant. When the trace field is Q, using work of Granville and Soundararajan, we establish
a stronger result that allows our constant lower bound to instead grow with the area/volume. As an
application, we establish a systolic bound for arithmetic hyperbolic surfaces that is related to prior
work of Buser–Sarnak and Katz–Schaps–Vishne. Finally, we establish an analogous density result
for commensurability classes of arithmetic hyperbolic 3–manifolds with a small area totally geodesic
surface.

1. INTRODUCTION

Given a closed, orientable surface Σg of genus g ≥ 2, the moduli space of hyperbolic metrics on Σg
is denoted by Mg. This (3g− 3) complex dimensional moduli space is a central object of interest
in several fields. The present article is concerned with the subset of arithmetic hyperbolic points. It
follows from work of Borel [1] that the set of arithmetic hyperbolic structures comprise a finite set in
Mg. These very special hyperbolic metrics naturally arise in connection to algebraic and geometric
extremal problems; for instance, Hurwitz surfaces that achieve the maximal possible order isometry
group are always arithmetic.

Associated to a hyperbolic metric is a discrete, faithful representation ρhol : π1(Σg)→ PSL(2,R) with
image that we denote by Γ. By seminal work of Margulis [19], a hyperbolic metric is arithmetic if
and only if

[Comm(Γ) : Γ] = ∞,

where
Comm(Γ) = {η ∈ PSL(2,R) : [Γ : Γη ], [Γ

η : Γη ]< ∞}
and

Γ
η = η

−1
Γη , Γη = Γ∩Γ

η .

The group Comm(Γ) is referred to as the commensurator. There are several (conjectural) characteri-
zations of arithmeticity based on algebraic information about Γ and geometric information about the
metric itself (see Cooper–Long–Reid [6, 21], Geninska–Leuzinger [10], Lafont–McReynolds [15],
Luo–Sarnak [17], and Schmutz [23]). These characterizations function through symmetries and it is
not entirely clear what makes arithmetic hyperbolic surfaces special geometrically through the above
lenses.

One well known conjecture regarding the special geometric nature of arithmetic hyperbolic surfaces
is the Short Geodesic Conjecture. For a hyperbolic surface M ∈Mg, we denote the systole of M by
Sys(M), and recall that this is the length of the shortest closed geodesic on M. The Short Geodesic
Conjecture asserts that there exists a constant C, independent of genus, such that if M is an arithmetic
hyperbolic surface, then Sys(M) ≥ C. There is an analogous conjectural uniform lower bound for
the systole of arithmetic hyperbolic 3–manifolds. That Short Geodesic Conjecture for arithmetic
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hyperbolic 3–manifolds is slightly stronger than the Salem Conjecture (see [18, Section 12.3]) that
asserts a uniform lower bound on the set of Mahler measures of the Salem polynomials.

In order to state our main results, we require some additional terminology. In Section 2 we will
define the volume VC of a commensurability class C of arithmetic manifolds. This volume is defined
in terms of the volume of a distinguished representative of the class which arises in a natural way
from a maximal order in the quaternion algebra associated to C and allows us to count the number of
commensurability classes with bounded volume. Define Nk(V ) to be the number of commensurability
classes of arithmetic hyperbolic 2–manifolds (respectively, 3–manifolds) with invariant trace field k
and volume less than V . Given a positive real number x0, define Nk(V ;x0) to be the number of classes
C with invariant trace field k, volume less than V , and which have a representative M ∈ C satisfying
Sys(M)< x0.

Theorem 1.1. For all sufficiently large x0, we have

Nk(V ;x0)�V/ log(V )
1
2

as V tends to infinity, where the implied constants depend only on k and x0.

By establishing that Nk(V )�V , we deduce the following density result from Theorem 1.1.

Corollary 1.2. For every x0 > 0 and totally real number field k (respectively, number field with exactly
one complex place), we have

lim
V→∞

Nk(V ;x0)

Nk(V )
= 0.

It is straightforward to see that there is a uniform lower bound for the systoles of arithmetic hyper-
bolic 2–manifolds with fixed invariant trace field k. As a result, for small values of x0 we will have
Nk(V ;x0) = 0 for all V , in which case the statement of Corollary 1.2 is trivially satisfied. However,
for x0 sufficiently large, Nk(V ;x0) is unbounded. Our main result says that regardless of how large we
fix our threshold for “short” with regard to systole, the density of commensurability classes that have
a representative with a short geodesic is always zero.

Returning to Mg, Theorem 1.1 says that the probability a commensurability class of k–arithmetic
hyperbolic surfaces produces a point in the ε–thin part of Mg is asymptotically 1/ log(g)1/2 for any
fixed ε . By ε–thin part, we mean the set of hyperbolic surfaces M with Sys(M) < ε . By Mum-
ford’s Compactness Criterion, the associated thick-thin decomposition is analogous to the thick-thin
decomposition of a hyperbolic n–manifold.

If we restrict to the class of arithmetic hyperbolic surfaces arising from quaternion algebras over Q,
we can allow our notion of short to grow with the area of the surface while still maintaining density
one. Namely, with density one the systole has order of magnitude at least log log(VC ).

Theorem 1.3. Within the set of all commensurability classes of arithmetic hyperbolic surfaces with
invariant trace field Q there is, for all ε > 0, a density one subset of classes C such that

Sys(H2/Γ)> (
1
8
− ε) log log

(
24
π

VC

)
holds for all Γ ∈ C .

If Γ is a maximal arithmetic lattice with invariant trace field Q which has minimal co-area in its
commensurability class, one can deduce from Theorem 1.3 that with density one we have

(1) Sys(H2/Γ)> (
1
8
− ε) log log

(
24
π

V
)
,

where V is the co-area of Γ. As the systole is non-decreasing in covers, we see for those commensu-
rability classes, we have that as a uniform lower bound. In particular, we can compare (1) with the
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prior systolic estimates of Buser–Sarnak [3] and Katz–Schaps–Vishne [14]. Whereas previous systole
bounds have made extensive use of careful trace estimates, we instead use counting arguments that
take advantage of the basic tools of multiplicative number theory. One component of the argument is
a bound for a negative moment of L(1,χ), as χ ranges over quadratic Dirichlet characters; we extract
this bound from the detailed study made by Granville and Soundararajan [11] of the distribution of
these L–values. Furthermore, our systole bounds do not have any unspecified additive constants. The
presence of these constants in the work of Buser–Sarnak [3] and Katz–Schaps–Vishne [14] require
that one pass to large congruence covers of an arithmetic hyperbolic surface in order to obtain a non-
trivial systole bound. Our systole bounds on the other hand provide non-trivial bounds on the systole
of maximal arithmetic lattices. In this light, our results should be seen as complementing those of
Buser–Sarnak and Katz–Schaps–Vishne.

Remark. It is our use of the work of Granville–Soundararajan [11] that forces us to restrict to arith-
metic surfaces with invariant trace field Q.

One may view totally geodesic surfaces as an analogue of geodesics in a hyperbolic 3–manifold. With
this motivation, our final result is an analogous density result for small area totally geodesic surfaces
in commensurability classes of arithmetic hyperbolic 3–manifolds.

Theorem 1.4. Let V > 0 and k1, . . . ,kr be the invariant trace fields of those arithmetic hyperbolic sur-
faces with area at most V . The set of commensurability classes of arithmetic hyperbolic 3–manifolds
having a representative containing a totally geodesic surface with area at most V has density zero
within the set of all commensurability classes of arithmetic hyperbolic 3–manifolds with invariant
trace field a quadratic extension of some ki.

Obtaining uniform lower bounds on the area of the smallest totally geodesic surface is trivial since the
area of any finite type hyperbolic surface is uniformly bounded from below. However, a surface can
arise as a totally geodesic surface in infinitely many incommensurable manifolds and so the above
density result is non-trivial.

The aforementioned density results are established using counting results that are of independent
interest. In our prior work [16], the main input from analytic number theory came in the guise
of Tauberian theorems for Dirichlet series. Such results give a convenient method for translating
information about singular points into asymptotic estimates. The main novelty in this paper is the
use of mean value estimates for multiplicative functions that are valid uniformly, instead of merely
asymptotically. As with the counting results from [16], these methods potentially have a much broader
range of applications to other algebraic and geometric counting problems, and subsequently broader
geometric applications. Indeed, this paper serves as an illustration of these applications.

Acknowledgements. The authors would like to thank Ian Agol, Bobby Grizzard and Mikhail Be-
lolipetsky for useful conversations on the material of this paper. The first author was partially sup-
ported by an NSF RTG grant DMS-1045119 and an NSF Mathematical Sciences Postdoctoral Fel-
lowship. The second author was partially supported by the NSF grants DMS-1105710 and DMS-
1408458. The third author was partially supported by the NSF grant DMS-1402268. The fourth
author was partially supported by an AMS Simons Travel Grant.

2. PRELIMINARIES

Notation. Throughout this paper k will denote a number field of signature (r1(k),r2(k)). In practice
k will be either totally real or else contain a unique complex place. The ring of integers of k will be
denoted by Ok. Given an ideal I of Ok, we will denote by |I| its norm. The set of prime ideals of Ok
will be denoted Pk. The degree of k will be denoted by nk, the discriminant by ∆k, the associated
Dedekind zeta function by ζk(s) and the regulator by Regk. If L/k is a finite extension then we will
denote by ∆L/k the relative discriminant.
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Let k be a number field and B be a quaternion algebra over k. We will denote by Ram(B) the set of
primes of k (possibly infinite) which ramify in B, by Ram f (B) (respectively Ram∞(B)) the subset of
Ram(B) consisting of the finite (respectively infinite) primes of k which ramify in B. Similarly, we
define the discriminant disc(B) of B to be the product of all primes (possibly infinite) in Ram(B). We
define disc f (B) and disc∞(B) similarly.

Let H2, H3 denote real hyperbolic space of dimension 2 and 3. We will denote by M an arithmetic
hyperbolic 2– or 3–manifold and by Γ the associated arithmetic lattice in PSL(2,R) or PSL(2,C). In
other words M = H2/Γ or M = H3/Γ.

We will make use of standard asymptotic notation from analytic number theory throughout this paper.
We will use interchangeably the Vinogradov symbol, f � g, and the Landau Big-Oh notation, f =
O(g), to indicate that there is a constant C > 0 such that | f | ≤C |g|. Moreover, we will write f � g to
indicate that f � g and g� f . Lastly, we write f = o(g) if limx→∞

f (x)
g(x) = 0 and f ∼ g if limx→∞

f (x)
g(x) =

1. Any subscripts on these symbols will indicate dependence of the implied constants.

Arithmetic Manifolds. In this brief section we describe the construction of arithmetic lattices in
PSL(2,R) and PSL(2,C). Our presentation will necessarily be terse. For a more detailed exposition
we refer the reader to Maclachlan and Reid [18].

We begin by reviewing the construction of arithmetic Fuchsian groups. Let k be a totally real field and
B a quaternion algebra over k which is unramified at a unique real place v of k. We therefore have an
identification Bv = B⊗k kv∼=M(2,R). Let O be a maximal order of B and O1 the multiplicative group
consisting of those elements of O having reduced norm one. We denote by Γ1

O the image in PSL(2,R)
of O1. The group Γ1

O is a discrete subgroup of PSL(2,R) having finite covolume. A subgroup Γ of
PSL(2,R) is an arithmetic Fuchsian group if it is commensurable in the wide sense with a group of
the form Γ1

O for some totally real field k, quaternion algebra B over k and maximal order O of B. We
will denote by C (k,B) the set of all discrete subgroups of PSL(2,R) commensurable with Γ1

O .

The construction of arithmetic Kleinian groups is very similar. Let k be a number field with a unique
complex place v and B a quaternion algebra over k which is ramified at all real places. Let O be a
maximal order of B and Γ1

O the image in PSL(2,C) of O1 under the identification Bv = B⊗k kv ∼=
M(2,C). A subgroup Γ of PSL(2,C) is an arithmetic Kleinian group if it is commensurable in the
wide sense with a group of the form Γ1

O for some number field k having a unique complex place,
quaternion algebra B over k ramified at real primes and maximal order O of B.

Given two arithmetic lattices Γ1,Γ2 arising from (ki,Bi), we know that Γ1 and Γ2 will be commensu-
rable in the wide sense precisely when k1 ∼= k2 and B1 ∼= B2 [18, Theorem 8.4.1]. We will make use
of this fact many times throughout the remainder of this paper.

Finally, throughout this paper we will be interested in counting the number of commensurability
classes of arithmetic hyperbolic surfaces or 3–manifolds with a specified property. We will count
these commensurability classes as follows. Let C (k,B) be a commensurability class of arithmetic
hyperbolic surfaces or 3–manifolds. We define the volume of C (k,B) to be VC (k,B) := covol(Γ1

O)
where O is a maximal order in B. A result of Borel [1] (see also [18, Chapter 11.1]) shows that

VC (k,B) = covol(Γ1
O) =

8π |∆k|
3
2 ζk(2)

(4π2)nk ∏
p|disc f (B)

(|p|−1)

when C (k,B) is a commensurability class of arithmetic hyperbolic surfaces and that

VC (k,B) = covol(Γ1
O) =

|∆k|
3
2 ζk(2)

(4π2)nk−1 ∏
p|disc f (B)

(|p|−1) .
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when C (k,B) is a commensurability class of arithmetic hyperbolic 3–manifolds. Note that this defi-
nition does not depend on the choice of maximal order. It is with respect to this notion of volume that
all of our counting results for commensurability classes of arithmetic manifolds will be based.

3. THEOREM 1.2: ABSOLUTE LOGARITHMIC WEIL HEIGHTS AND LENGTHS OF CLOSED
GEODESICS

3.1. Bounds for absolute logarithmic Weil heights. In this section we count the number of com-
mensurability classes of arithmetic hyperbolic 2– and 3–manifolds which have a fixed invariant trace
field k and possess a representative with a closed geodesic of length less than x0.

Our proof will make use of several important facts about absolute logarithmic Weil heights of alge-
braic integers, hence we begin by defining the relevant terms.

Let L be a number field, p ∈PL a prime ideal and |·|p the associated valuation normalized so that for
each α ∈ L, we have

∏
p|∞
|α|p =

∣∣NormL/Q(α)
∣∣

and

∏
p∈PL

|α|p = 1.

We define the logarithmic height of α relative to L to be

hL(α) = ∑
p∈PL

log
(

max
{

1, |α|p
})

.

The absolute logarithmic Weil height of α is

h(α) = [L : Q]−1hL(α)

and is independent of the field L. We will make repeated use of the fact that height of α relative to
Q(α) is the logarithm of the Mahler measure of the minimal polynomial of α . The following height
bounds will play an important role in the proof of this section’s main result.

Theorem 3.1 (Silverman [26]). Let L/k be a quadratic extension of number fields with norm of rela-
tive discriminant

∣∣∆L/k
∣∣ and α be a primitive element for the extension. Then the absolute logarithmic

Weil height h(α) of α satisfies

h(α)≥ −(r1(k)+ r2(k)) log(2)
2nk

+
1

4nk
log
∣∣∆L/k

∣∣ .
Theorem 3.2 (Brindza [2], Hajdu [12]). Let L be a number field of degree nL ≥ 2 with unit group
rank rL, absolute value of discriminant |∆L| and regulator RegL. Suppose further that L is not an
imaginary quadratic field. Then there exists a system of fundamental units {u1, . . . ,urL} of L such that
the following inequality holds for all 1≤ i≤ rL:

h(ui)≤ 6nLn5nL
L RegL .

In order to proceed we now translate the height bounds of Theorems 3.1 and 3.2 into facts about the
lengths of closed geodesics on certain arithmetic manifolds.

Proposition 3.1. Let k be a totally real number field (respectively number field with a unique complex
place) of degree nk and B be a quaternion algebra over k which is unramified at precisely one real
place of k (respectively ramified at all real places of k). If the commensurability class defined by the
arithmetic data (k,B) possesses a representative with a primitive closed geodesic of length less than
x0 then there exists a quadratic extension L/k which embeds into B and satisfies

∣∣∆L/k
∣∣< e2(nk+x0).
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Proof. We give a proof in the case that k has a unique complex place. The proof in the totally real
case is similar and will be left to the reader. Suppose therefore that Γ is an arithmetic Kleinian group
in the commensurability class defined by (k,B) such that the hyperbolic 3–orbifold H3/Γ contains a
closed geodesic of length `(γ)< x0, where γ ∈Γ is the associated hyperbolic element. It is known [18,
Chapter 8] that in this case the subgroup Γ(2) of Γ generated by squares is derived from a quaternion
algebra in the sense that Γ(2) is contained in a group of the form Γ1

O for some maximal order O of
B. Note that Γ(2) contains the element γ2, hence the quotient orbifold contains a closed geodesic of
length 2`(γ). As the length of the closed geodesic associated to γ2 is equal to twice the logarithm
of the Mahler measure of the minimal polynomial of γ2 [18, Lemma 12.3.3], which is equal to the
height of γ2 relative to Q(λγ2), we see that [Q(λγ2) : Q] ∈ {nk,2nk} (see [5, Lemma 2.3]) implies that
the absolute logarithmic Weil height h(γ2) of γ2 satisfies x0 > 2nkh(γ2). As the field L = k(λγ2) is
a quadratic extension of k which embeds into B (see [18, Chapter 12]), the proposition follows from
Theorem 3.1. �

Proposition 3.2. Let k be a totally real number field (respectively number field with a unique complex
place) of degree nk and absolute value of discriminant |∆k| and B be a quaternion algebra over k
which is unramified at precisely one real place of k (respectively ramified at all real places of k). If B
admits an embedding of a quadratic extension L/k which satisfies

∣∣∆L/k
∣∣<( x0

4 ·62nk(2nk)10nk+1 |∆k|4nk

)1/2nk

and which is not totally complex in the case that k is totally real, then the commensurability class
defined by the arithmetic data (k,B) possesses a representative with a primitive closed geodesic of
length less than x0.

Proof. As in the proof of Proposition 3.1 we will prove Proposition 3.2 in the case that k has a unique
complex place and leave the totally real case to the reader.

As every real place of k ramifies in B, the Albert–Brauer–Hasse–Noether theorem implies that L is
totally complex. It now follows from Dirichlet’s unit theorem that every system of fundamental units
of L/k contains a fundamental unit u0 ∈ O∗L such that un

0 6∈ O∗k for any n ≥ 1. Let σ denote the
nontrivial automorphism of Gal(L/k) and define u = u0/σ(u0). It is clear that NormL/k(u) = 1 and
that un 6∈ O∗k for any n≥ 1.

Theorem 3.2 above, with Lemmas 4.4, 4.5 of [16] and elementary properties of Weil heights show
that we may assume that u satisfies

h(u)≤ 2 ·62nk(2nk)
10nk |∆L|2nk ≤ 2 ·62nk(2nk)

10nk |∆k|4nk
∣∣∆L/k

∣∣2nk .

Let O be a maximal order of B which contains the quadratic order Ok[u] and let γ denote the image
in Γ1

O of u. The proposition now follows from Lemma 12.3.3 of [18] and the fact that the logarithm
of the Mahler measure of the minimal polynomial of γ is at most 2nkh(u). �

3.2. A mean value theorem and applications. Let k be a number field. A complex-valued function
f defined on the (nonzero) ideals of Ok is multiplicative if f (ab) = f (a) f (b) whenever a and b are
coprime. When k = Q, the following mean value theorem appears as Theorem 01 in [13, Chapter
0], and the proof is sketched in Exercise 01 there. For details, see [25, p. 58]. The argument for
general number fields k can be carried out in precisely the same way, simply by replacing the sums
over natural numbers with sums over integral ideals, and so we omit it.

Proposition 3.3. Let k be a number field. Let f be a nonnegative-valued multiplicative function on
ideals of Ok. Suppose there are constants A≥ 0 and B≥ 0 for which the following hold: For all y≥ 0,

(2) ∑
|p|≤y

f (p) log |p| ≤ Ay,
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and

(3) ∑
p

∑
ν≥2

f (pν)

|pν |
log |pν | ≤ B.

(Here the sums on p are over prime ideals of Ok.) For all x > 1,

∑
|a|≤x

f (a)≤ (A+B+1)
x

logx ∑
|a|≤x

f (a)
|a|

≤ (A+B+1)
x

logx ∏
|p|≤x

(
1+

f (p)
|p|

+
f (p2)

|p2|
+ . . .

)
.

Suppose that at prime power ideals, the values of f are bounded by a constant depending at most on
k. Then (2) and (3) hold with constants A and B depending only on k. Indeed, the bound

∑
|p|≤y

log |p| �k y

is a crude consequence of Landau’s prime ideal theorem. Moreover, since log |pν | � |p|ν/3,

∑
p

∑
ν≥2

log |pν |
|pν |

�∑
p

∑
ν≥2
|p|−2ν/3�∑

p

|p|−4/3.

The final sum on p is bounded above by ζk(4/3). Thus, we can choose a constant B, depending on k,
such that (3) holds.

The following sieve lemma is a simple consequence of Proposition 3.3.

Lemma 3.4. Let k be a number field, and let P be a set of prime ideals of Ok. Suppose g is a
nonnegative and multiplicative function on the ideals of Ok, and that the values of g on prime power
ideals are Ok(1). Then for x≥ 2,

∑
|a|≤x

a squarefree
gcd(a,P)=1

g(a)�k x ∏
|p|≤x
p/∈P

(
1+

g(p)−1
|p|

)
∏
|p|≤x
p∈P

(
1− 1
|p|

)
.

Here “gcd(a,P) = 1” denotes the condition that a not be divisible by any member of P .

Remark. The case when g is identically 1 is particularly important. In that case, Lemma 3.4 shows
that the number of squarefree a with |a| ≤ x and gcd(a,P) = 1 is

(4) �k x ∏
|p|≤x
p∈P

(
1− 1
|p|

)
.

Proof of Lemma 3.4. Let f (a) = g(a)µ(a)21gcd(a,P)=1, where 1gcd(a,P)=1 denotes the charactistic
function detecting those ideals for which gcd(a,P) = 1. Then f is multiplicative and its values at
prime power ideals are Ok(1). Applying Proposition 3.3,

∑
|a|≤x

a squarefree
gcd(a,P)=1

g(a) = ∑
|a|≤x

f (a)�k
x

logx ∏
|p|≤x
p/∈P

(
1+

g(p)
|p|

)
.

We now use the estimate
1

logx
�k ∏

|p|≤x

(
1− 1
|p|

)
,
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which is a crude version of Mertens’ theorem for number fields. (For a sharper, asymptotic version,
see [22].) Inserting this above gives

∑
|a|≤x

a squarefree
gcd(a,P)=1

g(a)�k x

(
∏
|p|≤x
p/∈P

(
1− 1
|p|

)(
1+

g(p)
p

))(
∏
|p|≤x
p∈P

(
1− 1
|p|

))

≤ x ∏
|p|≤x
p/∈P

(
1+

g(p)−1
|p|

)
∏
|p|≤x
p∈P

(
1− 1
|p|

)
. �

Define a multiplicative function Φ on the non-zero integral ideals of k as follows:

Φ(a) = |a|∏
p|a

(
1− 1
|p|

)
.

Theorem 3.3. Let k be a number field, and let L/k be a quadratic extension. Let x≥ 2. The number
of quaternion algebras B over k with Φ(disc f (B))≤ x and which admit an embedding of L is

�k,L
x

(logx)1/2 .

Proof. Since there are only Ok(1) possibilities for disc∞(B), it is enough to establish the stated upper
bound for the number of possible values of disc f (B). Let P denote the set of prime ideals of k that
split in L.

In what follows, we use d to denote a squarefree ideal of Ok not divisible by any member of P . Since
disc f (B) is such an ideal, it suffices to show the stated bound for the number of d with Φ(d)≤ x.

We begin by estimating a second moment. Using Lemma 3.4, we have for any y≥ 3 that

(5) ∑
|d|≤y

(
|d|

Φ(d)

)2

�k y ∏
|p|≤y
p/∈P

(
1+

(|p|/Φ(p))2−1
|p|

)
∏
|p|≤y
p∈P

(
1− 1
|p|

)
.

Now
(|p|/Φ(p))2−1

|p|
=

(2|p|−1)
(|p|−1)2|p|

= O
(

1
|p|2

)
.

Noting that ∑
p

1
|p|2

< ∞ and that 1+ t ≤ exp(t) for all real t, we deduce that the first right-hand

product in (5) satisfies

∏
|p|≤y
p/∈P

(
1+

(|p|/Φ(p))2−1
|p|

)
≤ exp

(
∑
p

O
(

1
|p|2

))
�k 1.

To handle the second product, we can use the Chebotarev density theorem, according to which the
primes of k that split in L have density 1

2 . From a version of that theorem with a reasonable error term
(e.g., the version of the theorem given in [24]), along with partial summation, we have

∑
|p|≤y
p∈P

1
|p|

=
1
2

loglog |y|+OL,k(1).

Since

log
(

1− 1
|p|

)
=− 1
|p|

+O
(

1
|p|2

)
,
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it follows that the second right-hand product above is OL,k((logy)−1/2), and so collecting everything,

∑
|d|≤y

(
|d|

Φ(d)

)2

�k,L
y

(logy)1/2 .

We now return to counting d with Φ(d) ≤ x. Taking y = x in the last estimate and noting that the
summands are all at least 1, we see there are only O(x/(logx)1/2) possible d with |d| ≤ x. Now let
y = 2`x, where ` is a nonnegative integer. Observe that if |d|> y but Φ(d)≤ x, then

(|d|/Φ(d))2 > (y/x)2 = 4`.

Hence,

#{d : |d| ∈ (y,2y],Φ(d)≤ x} ≤ 1
4` ∑
|d|≤2y

(
|d|

Φ(d)

)2

� 1
4`

2`+1x
log(2`+1x)1/2 �

1
2`

x
(logx)1/2 .

Summing on `, we find that the total number of d with |d|> x but Φ(d)≤ x is also O(x/(logx)1/2). �

3.3. Proof of Theorem 1.1. Let x0 be a positive real number and k be a number field which is totally
real (respectively has a unique complex place). Recall that Nk(V ;x0) is the number of commensu-
rability classes of arithmetic hyperbolic 2–manifolds (respectively 3–manifolds) with invariant trace
field k, volume less than V and containing a primitive closed geodesic of length less than x0. To prove
Theorem 1.1, we must show that for all sufficiently large x0 we have

Nk(V ;x0)�V/ log(V )
1
2 ,

where the implied constants depend only upon k and x0.

Proof of Theorem 1.1. We give a proof in the case of arithmetic hyperbolic 2–manifolds and leave
the 3–manifold case to the reader. Borel [1, Section 7.3] has shown that the covolume of Γ1

O is

(6) covol(Γ1
O) =

8π |∆k|
3
2 ζk(2)Φ(disc f (B))
(4π2)nk

,

where
Φ(disc f (B)) = ∏

p|disc f (B)
(|p|−1) .

It therefore follows from Proposition 3.1 that Nk(V ;x0) is at most the number of isomorphism classes
of quaternion algebras B over k which satisfy

Φ(disc f (B))≤ ckV

and admit an embedding of some quadratic extension L/k with norm of relative discriminant∣∣∆L/k
∣∣< e2(nk+x0).

Here ck is a positive constant depending only on k and which can easily be made explicit via (6). A
theorem of Datskovsky and Wright [7] shows that as x→ ∞ the number of quadratic extensions L/k
with

∣∣∆L/k
∣∣< x is

∼ κk

2r2ζk(2)
x,

where κk is the residue at s = 1 of the Dedekind zeta function ζk(s) of k and r2 is the number of
complex places of k.
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Theorem 3.3 shows that for a fixed quadratic extension L of k, the number of quaternion algebras B
over k with discriminant satisfying Φ(disc f (B))< x and which admit an embedding of L is less than

δLx

log(x)
1
2

for some constant δL depending on L and k. Let L1, . . . ,Lr be the quadratic extensions of k satisfying∣∣∆Li/k
∣∣< e2(nk+x0)

and define

δ := max
i=1,...,r

δLi .

The discussion above shows that for sufficiently large x0,

Nk(V ;x0)�k e2x0δV/ log(V )
1
2

�k,x0 V/ log(V )
1
2 .

We now prove that for sufficiently large x0,

Nk(V ;x0)�k,x0 V/ log(V )
1
2 .

Let x0 be large enough that there exists a quadratic extension L of k which has signature (2,nk− 1)
and satisfies ∣∣∆L/k

∣∣<( x0

4 ·62nk(2nk)10nk+1 |∆k|4nk

)1/2nk

.

A minor modification to the proof of Theorem 1.7 of [16] shows that the number of quaternion
algebras B over k which are unramified at a unique real place of k, admit an embedding of L and which
satisfy

∣∣disc f (B)
∣∣<V is�V/ log(V )

1
2 as V →∞. Proposition 3.2 shows that each commensurability

class C (k,B) has a representative possessing a closed geodesic of length at most x0. Observing that∣∣disc f (B)
∣∣> Φ(disc f (B)) we see that each of these classes C (k,B) satisfies

VC (k,B) = covol(Γ1
O)

=
8π |∆k|

3
2 ζk(2)Φ(disc f (B))
(4π2)nk

<
8π |∆k|

3
2 ζk(2)

∣∣disc f (B)
∣∣

(4π2)nk

≤ ck
∣∣disc f (B)

∣∣
≤ ckV,

where ck is a positive constant which depends only on k. The theorem follows. �

Remark. We note that in our applications of results from [16] that one must take into account that
in [16] the discriminant of a quaternion algebra B over k is defined to be the formal product of all
infinite primes of k ramifying in B with the square of the product of all finite primes of k ramifying
in B, whereas the present paper defines disc(B) to be the product of all primes of k (finite or infinite)
ramifying in B.
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3.4. Proof of Corollary 1.2. We are now ready to prove Corollary 1.2 using Theorem 1.1.

Proof of Corollary 1.2. In light of Theorem 1.1 it suffices to show that as V → ∞, the number Nk(V )
of commensurability classes C of arithmetic hyperbolic 2–manifolds (3–manifolds) having invariant
trace field k and VC <V satisfies

(7) Nk(V )�V,

where the implied constant depends only on k. Indeed, we would have

Nk(V ;x0)

Nk(V )
� 1

log(V )1/2 ,

and hence verify the density zero claim. As above we will give a proof in the case of arithmetic
hyperbolic 2–manifolds and leave the case of arithmetic hyperbolic 3–manifolds to the reader.

Let k be a totally real field, B a quaternion algebra over k in which a unique real place splits and O a
maximal order of B. If for some V > 0, we have∣∣disc f (B)

∣∣< V (4π2)nk

8π |∆k|
3
2 ζk(2)

,

then it follows from (6) that we must have

(8) VC := covol(Γ1
O)<V,

where C = C (k,B). A slight modification of Theorem 1.5 of [16] shows that as V → ∞, the number
Nk,quat(V ) of quaternion algebras B over k which are unramified at a unique real place of k and satisfy∣∣disc f (B)

∣∣< cV satisfies

(9) Nk,quat(V )�V,

where the implied constant depends only on k. From (8) and (9), we obtain (7) as needed. �

Straightforward modifications to the proofs of Theorem 1.1, Theorem 3.3, and Corollary 1.2 show
the following.

Corollary 3.5. For any totally real number field k (respectively, number field with exactly one complex
place), we have

Nk(V )�V,

where the implied constant depends upon k.

4. SYSTOLIC GROWTH OF ARITHMETIC HYPERBOLIC SURFACES

The main geometric goal of this section is the proof of Theorem 1.3

4.1. Counting quaternion algebras into which few quadratic fields embed. We start with a count-
ing result that we will use with Proposition 3.1 in our proof of Theorem 1.3.

Theorem 4.1. Let h(x) be any function which is o(log(x)
1
2 ), NQ,quat(x) be the number of quaternion

algebras B over Q with disc f (B) < x and N′Q,quat(x;h) be the number of quaternion algebras B over
Q with disc f (B) < x and which do not admit an embedding of any quadratic field having absolute
value of discriminant less than h(x). Then as x→ ∞,

N′Q,quat(x;h)∼ NQ,quat(x).

To prove Theorem 4.1, we require the following lemma.
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Lemma 4.1. Let K be a quadratic field. The number NQ,quat(x;K) of quaternion algebras B over Q
with disc f (B)< x which admit an embedding of K satisfies

NQ,quat(x;K)� x
(logx)1/2

(
|∆K |

φ(|∆K |)

)1/2

∏
p≤x

(
1−

(
∆K
p

)
p

)1/2

.

Here the implied constant is absolute.

Proof. Since B is an algebra over Q, the square-free integer disc f (B) determines B. Moreover, if
K embeds into B, then disc f (B) is not divisible by any prime that splits in K. Since disc f (B) < x,
equation (4) — with k = Q and P the set of rational primes that split in K — shows that the number
of possibilities for B is

(10) � x ∏
p≤x
p-∆K

(
1−

(
1+
(

∆K
p

))
/2

p

)
≤ x ∏

p≤x

(
1−

(
1+
(

∆K
p

))
/2

p

)
∏
p|∆K

(
1− 1

2p

)−1

.

Using that log(1+ t) = t +O(t2) for |t| ≤ 1
2 ,

log
(

1−

(
1+
(

∆K
p

))
/2

p

)
= log

((
1− 1

p

)1/2(
1−

(
∆K
p

)
p

)1/2
)
+O

(
1
p2

)
,

and similarly

log

((
1− 1

2p

)−1
)

= log

((
1− 1

p

)−1/2
)
+O

(
1
p2

)
.

Now exponentiate. Keeping in mind that

∏
p≤x

(
1− 1

p

)
� 1

logx
,

that

∏
p|∆K

(
1− 1

p

)−1

=
|∆K |

φ(|∆K |)
,

and that

∑
p

1
p2 < ∞,

we see that the final expression in (10) is

� x
(logx)1/2

(
|∆K |

φ(|∆K |)

)1/2

∏
p≤x

(
1−

(
∆K
p

)
p

)1/2

,

where the implied constants are absolute. �

We now prove Theorem 4.1.

Proof of Theorem 4.1. Let H be a parameter assumed to satisfy H ≤ logx. Let K be a quadratic field
with |∆K | ≤ H, and let χ(·) =

(
∆K
·
)

be the associated quadratic Dirichlet character. Let us estimate
the Euler product factor appearing in the upper bound of Lemma 4.1. Since

log
(

1− χ(p)
p

)
=−χ(p)

p
+O

(
1
p2

)
and

∑
p

1
p2 < ∞,
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we see that

(11) L(1,χ)∏
p≤x

(
1− χ(p)

p

)
= ∏

p>x

(
1− χ(p)

p

)
� exp

(
−∑

p>x

χ(p)
p

)
.

Since χ is a primitive character of conductor |∆K |, and |∆K | ≤ H ≤ logx, the prime number theorem
for progressions implies that

∑
p≤T

χ(p)� T/(logT )2,

uniformly for T ≥ x. (Here we use [8, eq. (8), p.123], along with the bound

β1 < 1− c/q1/2 log2 q

coming from Dirichlet’s class number formula.) Hence, by partial summation,

∑
p>x

χ(p)
p

= O(1).

With (11), the above yields

∏
p≤x

(
1− χ(p)

p

)
� L(1,χ)−1.

It now follows from Lemma 4.1 that the number NQ,quat(H;K) of quaternion algebras B/Q that admit
an embedding of some quadratic field K with |∆K | ≤ H satisfies

NQ,quat(H;K)� x
(logx)1/2 ∑

|∆K |≤H

(
|∆K |

φ(|∆K |)

)1/2

L(1,
(

∆K

·

)
)−1/2.

By Cauchy–Schwarz, the sum on ∆K is

�
(

∑
|∆K |≤H

|∆K |
φ(|∆K |)

)1/2(
∑
|∆K |≤H

L(1,
(

∆K

·

)
)−1
)1/2

.

The first sum is O(H). In fact, it is well-known that the arithmetic function n/φ(n) has finite moments
of every order (see, e.g., [20, Exercise 14, p. 42]). From [11, Theorem 2] (with z = −1), and the
subsequent comment there about Siegel’s theorem, the second sum on ∆K is also O(H). We conclude
that

NQ,quat(H;K)� xH
(logx)1/2 .

Finally, let H = h(x). Since h(x) = o((logx)1/2), our upper bound is o(x). Since NQ,quat(x)� x from
[16, Theorem 1.5], the theorem follows. �

Remark. The above argument is similar to the proof of [9, Lemma 2.6].

4.2. Applications to the systole growth of arithmetic hyperbolic surfaces. Recall that for a hy-
perbolic 2–orbifold M, we denote the systole of M by Sys(M), which is the length of the shortest
closed geodesic on M.

Theorem 4.2. Let S1 be the set of all arithmetic Fuchsian groups of the form Γ1
O where O is a

maximal order of an indefinite quaternion division algebra over Q and Smin be the set of all maximal
arithmetic Fuchsian groups with invariant trace field Q which have minimal covolume within their
commensurability class. Then for all ε > 0 the following are true:

(i) The set of Γ ∈ S1 such that

Sys(H2/Γ)> (
1
4
− ε) log log

(
3
π

Vol(H2/Γ)

)
has density one in S1.
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(ii) The set of Γ ∈ Smin such that

Sys(H2/Γ)> (
1
4
− ε) log log

(
24
π

Vol(H2/Γ)

)
has density one in Smin.

Proof. Let h(x) = log(x)
1
2−ε and B be an indefinite quaternion division algebra over Q which does not

admit an embedding of any quadratic field with absolute value of discriminant less than h(disc f (B)).
Note that by Theorem 4.1 and its proof, the set of such quaternion algebras has density one within the
set of all indefinite quaternion division algebras over Q. Let O be a maximal order in B so that Γ1

O ∈
C (Q,B) and Γmin be the element of C (Q,B) with minimal covolume. We remark that because every
indefinite quaternion algebra defined over Q has type number 1, there is a one to one correspondence
between arithmetic Fuchsian groups of the form Γ1

O , arithmetic Fuchsian groups of the form Γmin and
commensurability classes C (Q,B). The first assertion now follows from Proposition 3.1, Theorem
4.1 and equation (13). The second assertion follows from the same reasoning along with the fact that
(see [1] and Lemma 2.1 of [4])

[Γmin : Γ
1
O ] = 21+#Ram f (B).

�

As a consequence of Theorem 4.2, we obtain Theorem 1.3 from the introduction. The details are as
follows.

Proof of Theorem 1.3. In light of Theorem 4.2 it suffices to show that for all Γ ∈ C (Q,B), where
C (Q,B) lies within a set of commensurability classes of density one,

Sys(H2/Γ)>
1
2

Sys(H2/Γ
min).

To that end, let γ ∈ Γ be a hyperbolic element whose associated geodesic has length `(γ). The
subgroup Γ(2) generated by squares of elements in Γ is contained in Γ1

O for some maximal order O of
B (see [18, Chapter 8]). As Γmin is derived from the normalizer N(O) of O in B∗, we see that up to
isomorphism γ2 ∈ Γ(2) ⊂ Γ1

O ⊂ Γmin. As `(γ2) = 2`(γ), the corollary follows from Theorem 4.2. �

We now provide more details on the relation of Theorem 1.3 with the work of Buser-Sarnak. In [3],
they proved that if Γ is a cocompact arithmetic Fuchsian group defined over Q then there is a constant
c = c(Γ) such that systole of the congruence cover Γ[I] satisfies

(12) Sys(H2/Γ[I])>
4
3

log
(
g(H2/Γ[I])

)
− c,

where g(·) denotes genus. This result was subsequently extended to arbitrary cocompact arithmetic
Fuchisan groups by Katz, Schaps and Vishne [14]. Note that while the work of Katz, Schaps and
Vishne also contains an unspecified constant, this constant was made explicit in certain special cases;
for instance when Γ is the fundamental group of a Hurwitz surface. The methods used in both papers
are similar and involve extensive use of trace estimates. Theorem 1.3 provides a density one lower
bound with order of magnitude loglog, which is clearly not as good as (12) which has order of mag-
nitude log. On the other hand, our lower bound holds without a depth requirement, in contrast to the
result above that becomes non-trivial only once the level is sufficiently big. Important here is that our
method provides non-trivial bounds on the systole growth of a density one subset of commensurabil-
ity classes of maximal arithmetic hyperbolic surfaces. That yields a depth free bound on a density
one set of classes since systole is non-decreasing when passing to a finite cover.
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5. THEOREM 1.4: TOTALLY GEODESIC SURFACES OF SMALL AREA

Theorem 1.4 is an immediate consequence of the following theorem.

Theorem 5.1. Let k be a totally real field and C (k,B0) a commensurability class of arithmetic hy-
perbolic surfaces with invariant trace field k. The set of commensurability classes of arithmetic
hyperbolic 3–manifolds with a representative containing a totally geodesic surface in C (k,B0) has
density zero within the set of all commensurability classes of arithmetic hyperbolic 3–manifolds with
invariant trace field a quadratic extension of k.

Proof. Recall that the volume of a commensurability class C = C (L,B) of arithmetic hyperbolic
3–manifolds with invariant trace field L is

(13) VC = covol(Γ1
O) =

|∆L|
3
2 ζL(2)Φ(disc f (B))

(4π2)nk−1 ,

where O is a maximal order of B. The results of [18, Chapter 9.5] show that a representative of
C = C (L,B) contains a primitive totally geodesic surface in C (k,B0) if and only if L is a quadratic
field extension of k with a unique complex place and B0⊗k L ∼= B. The theorem of Datskovsky and
Wright [7] shows that the number of such C (L,B) with VC (L,B) < V is� V

2
3 for large V , where the

implied constant depends on C (k,B0).

Suppose now that L is a fixed quadratic extension of k which has a unique complex place. Then there
exists a constant δL > 0 such that the number of quaternion algebras B over L such that VC (L,B) <V is
� δLV for large V (see [16, Theorem 1.5] and the remark which follows the proof of Theorem 1.1),
which already proves the theorem. �

The following is an immediate consequence of Theorem 5.1, the fact that there are only finitely many
arithmetic hyperbolic surfaces of bounded volume [1] and the fact that all totally geodesic surfaces
of an arithmetic hyperbolic 3–manifold must have the same invariant trace field (which must be the
maximal totally real subfield of the invariant trace field of the 3–manifold).

Corollary 5.1. For all V > 0 the set of commensurability classes of arithmetic hyperbolic 3–manifolds
with a representative containing a totally geodesic surface with area less than V has density zero
within the set of all commensurability classes of arithmetic hyperbolic 3–manifolds.
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