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Abstract. In this article, we study the Fourier coefficients of Eisenstein series newforms.
We obtain a sharp refinement of the strong multiplicity-one theorem by showing that the
density of primes p for which the pth Hecke eigenvalues of two distinct Eisenstein series
newforms differ is of the form 1/n for some n ≥ 2. Additionally, we show that if f is an
Eisenstein series newform whose Fourier coefficients af (n) are real then there is a constant
δ > 0 such that the sequence (af (n))n≤x has at least δx sign changes.

1. Introduction

An important problem in the theory of modular forms is to determine the extent to which
a newform is determined by its Fourier coefficients. A similar problem asks for characteriza-
tions of a newform that enable one to distinguish it from other newforms. The classical strong
multiplicity-one theorem, for instance, shows that if the pth Fourier coefficients of two (nor-
malized) cuspidal newforms agree for all but finitely many primes p then the two newforms
are equal. Statistical refinements of results such as this are of great interest. With respect
to the strong multiplicity-one theorem, Ramakrishnan [9] has shown that, if the pth Fourier
coefficients of two cuspidal newforms agree for any set of primes having density greater than
7/8, then the two newforms are equal. See Walji [10] for a further refinement.

A related problem that has attracted a great deal of attention in recent years is to consider
a newform whose Hecke eigenvalues are real and determine the extent to which the newform
is determined by the signs of its Hecke eigenvalues (see [3, 4, 6, 7]). Some of the many
questions that have been addressed in this context are bounds on the first sign change in the
sequence of Hecke eigenvalues (a variant of the classical least quadratic non-residue problem
in analytic number theory), determining how often the sequence of signs of Fourier coefficients
of a newform agree with a fixed sequence of signs, and counting the number of sign changes
in the sequence of Fourier coefficients up to x.

In a previous paper of the authors [5], the aforementioned problems were considered for
the Fourier coefficients of Eisenstein series newforms. It was shown in [5, Theorem 5.4],
for instance, that an Eisenstein series newform is determined by the signs of its pth Fourier
coefficients for any set of primes having density greater than 1/2. (Note that by using
quadratic twists the authors were able to produce examples which show that this bound is
best possible.) In this paper we continue our study of the Fourier coefficients of Eisenstein
series newforms. With respect to the strong multiplicity-one theorem, we prove a new result
(Theorem 3.4) that implies:

Theorem 1. Let f, g be Eisenstein series newforms of weight k and levels N,M . Then
the density of the set of primes p for which the pth Fourier coefficients of f and g agree is
of the form 1/d for some divisor d of ϕ(lcm[N,M ]), where ϕ is the Euler totient function.
Moreover, as g varies over all Eisenstein series newforms of weight k, every fraction of the
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form 1/n occurs as the density of primes for which the pth Fourier coefficients of f and g
agree.

Let f be a cuspidal newform for the full modular group with Hecke eigenvalues λf (n).
Matomäki and Radziwi l l have recently proven [7] that there is a positive constant δ such that,
for x sufficiently large, the sequence (λf (n))n≤x has at least δx sign changes. In Theorem 4.6
we prove an analogous result for the Fourier coefficients of Eisenstein series newforms with
real coefficients. Our result can be reformulated in the following manner:

Theorem 2. Let f be an Eisenstein series newform whose Fourier coefficients af (n) are real
numbers. There exists a positive constant δ such that, for x sufficiently large, the sequence
(af (n))n≤x has at least δx sign changes. Moreover, half of the non-zero af (n) are positive
and the other half are negative.

We now discuss the organization of the paper. In Section 2 we review the newform theory
of Eisenstein series. This theory was developed by Weisinger [12] in his (unpublished) thesis
and extended to Hilbert modular forms by the first author and Atwill [1]. In Section 3 we
prove a refinement of the strong multiplicity-one theorem for Eisenstein series newforms. In
Section 4 we prove a result concerning the number of sign changes of the Fourier coefficients
of an Eisenstein series newform.

2. A newform theory for Eisenstein series

Given a positive integer N , a Dirichlet character χ modulo N and an integer k ≥ 3, we
let Mk(N,χ) be the complex vector space of modular forms for Γ0(N) with weight k and
character χ. Let Ek(N,χ) denote the subspace of Eisenstein series and Sk(N,χ) denote the
subspace of cusp forms. For a prime p, we will denote by Tp the pth Hecke operator and
recall that Tp preserves both Ek(N,χ) and Sk(N,χ). Additionally, for a positive integer d,
we denote by Bd the shift operator defined by

f | Bd = d−k/2f |
(
d 0
0 1

)
for f ∈Mk(N,χ). In terms of Fourier coefficients, if

f =
∞∑
n=0

af (n)qn,

where q = e2πiz, then

f | Bd =
∞∑
n=0

af (n)qnd.

This operator maps Mk(N,χ) to Mk(dN, χ) and takes Eisenstein series to Eisenstein series
and cusp forms to cusp forms. We note that if (d, p) = 1 then BdTp = TpBd.

Let N1, N2 be positive integers such that N = N1N2 and let χ1, χ2 be Dirichlet characters
modulo N1, N2 for which (χ1χ2)(−1) = (−1)k. We now define a modified sum-of-divisors
function by

σk−1χ1,χ2
(n) =

∑
d|n

χ1(n/d)χ2(d)dk−1.(2.1)
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Associated to the triple (χ1, χ2, k) is a function

E(χ1, χ2, k) =
δ(χ1)

2
L(1− k, χ2) +

∑
n≥1

σk−1χ1,χ2
(n)qn,

where q = e2πiz, L(s, χ2) is the Dirichlet L-function associated to χ2, and δ(χ1) = 1 if χ1

is principal and equal to 0 otherwise. It is well-known that E(χ1, χ2, k) ∈ Ek(N,χ) for
χ = χ1χ2 (see [2, Chapter 5]).

Definition. We will say that the Eisenstein series E(χ1, χ2, k) is a newform if the characters
χ1, χ2 are primitive.

The following proposition shows that, just like the cuspidal setting, Eisenstein series new-
forms are eigenforms for all of the Hecke operators Tp and have their T thp -eigenvalue equal to

their pth Fourier coefficient.

Proposition 2.1. Let E(χ1, χ2, k) be as above. Then for every prime p we have

E(χ1, χ2, k) | Tp = σk−1χ1,χ2
(p) · E(χ1, χ2, k).

Proof. If p - N then the desired equality is easily verified by examining the action of Tp on
the Fourier coefficients of E(χ1, χ2, k). When p | N the equality follows from Proposition
3.15 of [1]. �

Denote by Enewk (N,χ) the subspace of Ek(N,χ) spanned by newforms of exact level N
(i.e., newforms of level N which are not shifts of newforms of level M < N). The following
result (Proposition 3.11 of [1]) shows that, as in the setting of cusp forms, every Eisenstein
series can be expressed uniquely as a linear combination of shifts of newforms.

Theorem 2.2. Let the notation be as above. We have the following decompsiton of Ek(N,χ):

Ek(N,χ) =
⊕

cond(χ)|M |N

⊕
d|NM−1

Enewk (M,χ) | Bd.

3. The strong multiplicity-one theorem and matching densities

In this section we will recall a refinement of the strong multiplicity-one theorem proven by
the authors in [5, Section 5]. This refinement shows that if the set of primes at which the pth

Hecke eigenvalues of two Eisenstein series newforms coincide has a sufficiently large Dirichlet
density then the two newforms are equal. This result raises a number of questions which we
will address in this section. For instance, if f and g are two Eisenstein series newforms, what
can one say about the density of the set of primes for which their Hecke eigenvalues coincide?
In order to address these questions we introduce some useful terminology developed by Walji
[11].

Definition. Let f, g be Eisenstein series newforms. The matching density of f and g is the
Dirichlet density, if it exists, of the set of primes p for which

af (p) = ag(p).

We will denote this matching density by δ(f, g).

The first strong multiplicity-one theorem in the setting of Eisenstein series was proven
by Weisinger [12], who showed that if f and g are Eisenstein series newforms for which
af (p) = ag(p) for all but finitely many primes p then f = g. One of the main results of [5,
Theorem 5.1] is the following refinement of Weisinger’s result.
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Theorem 3.1. Let f ∈ Ek(N,χf ) and g ∈ Ek′(M,χg) be normalized newforms such that
δ(f, g) > 1/2. Then k = k′, N = M , χf = χg and f = g.

We note that Theorem 3.1 is best possible in that one may easily obtain, using quadratic
twists, pairs of newforms whose Hecke eigenvalues agree for a set of primes having density
1/2. Indeed, suppose that f ∈ Ek(N,χf ) is a newform and that θ is a quadratic Dirichlet
character whose conductor is coprime to N . Then by [1, Corollary 5.5], the character twist
f ⊗ θ is a newform. Moreover, the pth coefficient of f ⊗ θ is equal to af (p) if θ(p) = 1 and is
equal to −af (p) if θ(p) = −1. As each of these cases occurs for a set of primes having density
1/2 and the set of primes for which af (p) = 0 is finite, we have δ(f, f ⊗ θ) = 1/2.

Note that the authors have also shown [5, Theorem 5.3] that, in essence, the above qua-
dratic twist construction is the only way of producing newforms f, g for which δ(f, g) = 1/2.
This raises the interesting question of what the maximal value of δ(f, g) is for non-twist-
equivalent f and g. In what follows, we will prove a theorem (Theorem 3.4) which has as
an immediate consequence that the maximal such value is 1/3. The following example of
non-twist-equivalent Eisenstein newforms with δ(f, g) = 1/3 shows that this maximal value
is indeed attained.

Example 3.2. Let χ denote the Dirichlet character modulo 7 defined by χ(3) = ζ6 and let
ψ be the Dirichlet character modulo 7 defined by ψ(3) = −1. Then χ and ψ are primitive
characters of conductor 7 with the property that, for a prime p 6= 7, one has χ(p) = ψ(p)
if and only if p ≡ ±1 (mod 7). In particular the density of primes p for which χ(p) = ψ(p)
is exactly 1/3. Now let θ be the trivial character (primitive of conductor 1) and define
f = E(θ, χ, k) and g = E(θ, ψ, k) for any odd integer k ≥ 3. Then f and g are Eisenstein
series newforms of level 7 which are clearly not twist-equivalent and satisfy δ(f, g) = 1/3.

In order to prove Theorem 3.4 we will employ the following lemma (for a proof, see [5,
Lemma 5.2]).

Lemma 3.3. Let χ1, χ2, ψ1, ψ2 be Dirichlet characters and let k ≥ 2 be an integer. There
exists a positive constant p0 such that for all primes p > p0, if

χ1(p) + χ2(p)p
k−1 = ψ1(p) + ψ2(p)p

k−1

then χ1(p) = ψ1(p) and χ2(p) = ψ2(p).

Theorem 3.4. Let f ∈ Ek(N,χf ) and g ∈ Ek′(M,χg) be newforms.

(1) δ(f, g) = 0 if and only if k 6= k′.
(2) If k = k′ then δ(f, g) = 1/d for some divisor d of ϕ(lcm[N,M ]).
(3) For every positive integer n, there exists a newform g such that δ(f, g) = 1/n.

Proof. Write f = E(χ1, χ2, k) and g = E(ψ1, ψ2, k
′) and note that af (p) = χ1(p) +χ2(p)p

k−1

and ag(p) = ψ1(p) + ψ2(p)p
k′−1. Fix ε ∈ (0, 1). For all sufficiently large primes p, we have

|af (p)| ∈ (pk−1−ε, pk−1+ε) and |ag(p)| ∈ (pk
′−1−ε, pk

′−1+ε). It follows that k 6= k′ implies
δ(f, g) = 0, as these two intervals intersect if and only if k = k′. To prove the converse,
we must show that if k = k′ then δ(f, g) > 0. Suppose therefore that k = k′. If p ≡ 1
(mod lcm[N,M ]) then

af (p) = χ1(p) + χ2(p)p
k−1 = 1 + pk−1 = ψ1(p) + ψ2(p)p

k−1 = ag(p).

Assertion (1) now follows from the fact that the set of primes congruent to 1 modulo
lcm[N,M ] has positive density.



The Fourier coefficients of Eisenstein series newforms 55

Henceforth we will assume that k = k′. We now prove (2). Denote by χ′1, χ
′
2, ψ

′
1, ψ

′
2 the

characters modulo lcm[N,M ] induced by χ1, χ2, ψ1, ψ2. Let p1, . . . , pϕ(lcm[N,M ]) be primes

representing the residue classes of (Z/lcm[N,M ]Z)× which are all large enough that Lemma
3.3 holds. In particular, if af (pi) = ag(pi) then Lemma 3.3 implies that χ′1(pi) = ψ′1(pi) and
χ′2(pi) = ψ′2(pi), hence χ1(pi) = ψ1(pi) and χ2(pi) = ψ2(pi). Conversely, if χ1(pi) = ψ1(pi)
and χ2(pi) = ψ2(pi) then we will have af (p) = ag(p) for every prime p ≡ pi (mod lcm[N,M ]).
From this we conclude that if there are precisely s values of i for which χ1(pi) = ψ1(pi) and
χ2(pi) = ψ2(pi), then δ(f, g) = s/ϕ(lcm[N,M ]). In particular, to prove assertion (2), it
suffices to show that s is a divisor of ϕ(lcm[N,M ]). But this is clear, as the set of such

primes pi comprise a subgroup of (Z/lcm[N,M ]Z)×. Explicitly, this subgroup is ker(χ′1ψ
′
1)∩

ker(χ′2ψ
′
2), where χ′1ψ

′
1 and χ′2ψ

′
2 are regarded as homomorphisms from (Z/lcm[N,M ]Z)× to

C×.
We now prove (3). Fix a positive integer n. We will construct a newform g for which

δ(f, g) = 1/n. As we trivially have δ(f, f) = 1, we may assume that n ≥ 2. Let q be a prime
which does not divide N and which satisfies q ≡ 1 (mod n). As (Z/qZ)× is cyclic of order

q − 1, there exists a Dirichlet character θ0 modulo q which has order q − 1. Let θ = θ
(q−1)/n
0

and note that the density of primes p for which θ(p) = 1 is 1/n. By [1, Corollary 5.5], f ⊗θ is
a newform, and by definition, ag⊗θ(p) = θ(p)af (p). It follows that δ(f, f ⊗ θ) = 1/n, proving
assertion (3). �

Remark. We note that the third assertion of Theorem 3.4 can alternatively be proven by
associating to every Eisenstein series newform a reducible two-dimensional Galois represen-
tation (which would arise from the pair of Dirichlet characters defining the newform) and
then using the fact that the matching densities of abelian representations are of the form
{1/n : n ≥ 2} (see [11]).

4. Sign changes of Fourier coefficients

A series of recent papers studies when the first negative Fourier coefficient occurs. In the
cusp form case, we have a well-known theorem of Kowalski, Lau, Soundararajan and Wu [4],
which was recently improved by Matomäki [6]. In order to state these results, we denote by
f a cuspidal newform of weight k, level N , and trivial nebentypus. Note that the restriction
to trivial nebentypus ensures that all of the Fourier coefficients of f are real. We denote by
λf (n) the normalized Fourier coefficients of f .

Theorem 4.1 (Kowalski, Lau, Soundararajan, Wu, 2010). For k even and (n,N) = 1, we

have λf (n) < 0 for some n� (k2N)9/20.

Theorem 4.2 (Matomäki, 2012). For k even and (n,N) = 1, we have λf (n) < 0 for some

n� (k2N)3/8.

Matomäki and Radziwi l l [7] went on to prove a stronger result in the special case where
N = 1.

Theorem 4.3 (Matomäki and Radziwi l l, 2015). For N = 1, there exists a positive constant
δ such that, for x sufficiently large, the sequence (λf (n))n≤x has at least δx sign changes.
Furthermore, half of the non-zero λf (n) are positive and half are negative.



6 BENJAMIN LINOWITZ AND LOLA THOMPSON

We can obtain analogous results for Eisenstein series newforms. Recall that if f is an
Eisenstein series newform then f is associated to a triple (χ1, χ2, k) and satisfies

f = E(χ1, χ2, k) =
δ(χ1)

2
L(1− k, χ2) +

∑
n≥1

σk−1χ1,χ2
(n)qn,

where q = e2πiz, L(s, χ2) is the Dirichlet L-function associated to χ2 and δ(χ1) = 1 if χ1 is
principal and equal to 0 otherwise. In order to ensure that our Fourier coefficients are real,
we will only consider Eisenstein series newforms associated to quadratic Dirichlet characters.
We additionally assume that k ≥ 3.

Our proofs all rely on a single key lemma, which shows that understanding the signs of
Fourier coefficients of Eisenstein series newforms amounts to understanding the behavior of
certain quadratic Dirichlet characters. The proof of the key lemma first appeared in [5]. We
reproduce it here for the sake of completeness.

Lemma 4.4. If (n,N) = 1 and χ1, χ2 are quadratic, the sign of σk−1χ1,χ2
(n) is completely

determined by the behavior of χ2(n).

Proof. Starting with the definition of σk−1χ1,χ2
(n) given in (2.1), we can separate off the d = n

term, which gives us

σk−1χ1,χ2
(n) =

∑
d|n

χ1(n/d)χ2(d)dk−1

= χ2(n)nk−1 +
∑
d|n
d<n

χ1(n/d)χ2(d)dk−1

= nk−1
(
χ2(n) +

∑
d|n
d<n

χ1(n/d)χ2(d)

(n/d)k−1

)
.(4.1)

Consider the summation over the proper divisors of n in (4.1). Since |χ1(d)|, |χ2(d)| ≤ 1 for
all d ∈ Z+, we can bound each numerator from above by 1, which yields∑

d|n
d<n

χ1(n/d)χ2(d)

(n/d)k−1
≤
∑
d|n
d<n

1

(n/d)k−1
≤
∑
m≥2

1

mk−1 = ζ(k − 1)− 1 < 1.

Thus, the χ2(n)nk−1 term dominates in (4.1) and so we have

sgn σk−1χ1,χ2
(n) = χ2(n).

�

In [5], we used Lemma 4.4 to demonstrate when the first sign change occurs.

Theorem 4.5. Let p0 represent the smallest prime for which σk−1χ1,χ2
(p0) < 0. Then, for any

fixed ε > 0, we have

p0 �ε N
1

4
√
e
+ε
.

Note that the 1/4
√
e in the exponent comes from the classical Burgess bound for the least

quadratic non-residue. We can use Theorem 4.5 to obtain an analogue of Theorem 4.3 for
Eisenstein series:
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Theorem 4.6. Let f be an Eisenstein series newform with Fourier coefficients σk−1χ1,χ2
(n).

There exists a positive constant δ such that, for x sufficiently large, the sequence (σk−1χ1,χ2
(n))n≤x

has at least δx sign changes. Moreover, half of the non-zero σk−1χ1,χ2
(n) are positive and the

other half are negative.

The proof of the first part of this theorem relies on a recent result of Matomäki and
Radziwi l l that appeared in [8].

Theorem 4.7 (Matomäki & Radziwi l l, 2016). Let f : N → R be a multiplicative function.
Then f(n) has a positive proportion of sign changes if and only if f(n) < 0 for some integer
n > 0 and f(n) 6= 0 for a positive proportion of integers n.

Proof of Theorem 4.6. For the first assertion, recall that we are assuming that χ2 is a qua-
dratic character (mod N2). From Lemma 4.4, the sign of σk−1χ1,χ2

is completely determined by
the sign of χ2. In particular, we can rewrite

sgn σk−1χ1,χ2
(n) =

∏
p`||n

(χ2(p))
`.

Call this function g(n). The function g is multiplicative because it is a product of χ2(p)’s
and χ2 is totally multiplicative. By Theorem 4.5, we know that g(n) < 0 for some integer
n > 0. We now show that g(n) 6= 0 for a positive proportion of integers n. Indeed, if
n ≡ 1 (mod N2) then χ2(n) = 1 since the conductor of χ2 is N2. It follows that, for n ≡ 1
(mod N2), we have sgn(χ2(n)) = 1. Hence, by Lemma 4.4, sgn(σk−1χ1,χ2

) = 1, so g(n) = 1.
Because the density of integers n such that n ≡ 1 (mod N2) is positive, we see that g(n) 6= 0
for a positive proportion of integers. Therefore the hypotheses for Theorem 4.7 are met and
we have that g changes sign a positive proportion of the time. In other words, there exists a
positive constant δ such that the sequence (σk−1χ1,χ2

(n))n≤x has at least δx sign changes.
For the second assertion, we use the fact that the Dirichlet character χ2(n) = −1 half of

the time and χ2(n) = 1 the other half of the time. By Lemma 4.4, it follows that half of
the non-zero σk−1χ1,χ2

(n) are positive and the other half are negative. (Note: The proof of this
second claim originally appeared as Corollary 3.2 in [5].) �
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