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ABSTRACT. The goal of this paper is to obtain lower bounds on the
height of an algebraic number in a relative setting, extending previous
work of Amoroso and Masser. Specifically, in our first theorem we obtain
an effective bound for the height of an algebraic number o when the
base field K is a number field and K(«)/K is Galois. Our second result
establishes an explicit height bound for any non-zero element o which is
not a root of unity in a Galois extension F/K, depending on the degree
of K/Q and the number of conjugates of o which are multiplicatively
independent over K. As a consequence, we obtain a height bound for
such « that is independent of the multiplicative independence condition.

1. INTRODUCTION

Consider the non-constant polynomial

d
P(z) = Cdxd + cd_lxd_l +-t+cxr+co=cyq H(a: — 7).
i=1

The Mahler measure of P(x) is defined as

M(P) = exp ( /O 'og | P(27t)| dt),

the geometric mean of |P(z)| for z on the unit circle. By Jensen’s formula,
this is equivalent to
M(P) = el IT Iril-
|r;|>1
If P(x) has integer coefficients, then M (P) > 1; by a result of Kronecker,
M(P) = 1 exactly when P(x) is a power of x times a product of cyclotomic
polynomials.

Given an algebraic number «, we let d = [Q(«) : Q] be its degree over Q.
We will use M () to denote the Mahler measure of the minimal polynomial
of a over Z. We will formulate our results in terms of the Weil height of «,
defined to be

h(a) = L log M ().
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In [16] Lehmer asked whether there are monic integer polynomials whose
Mahler measure is arbitrarily close to 1. For the polynomial L(z) = 2'0 4
29 — 2" — 2% — 2% —2* — 23 4 £ + 1 (now called Lehmer’s polynomial),
he calculated M (L) = 1.176280818..., which is still the smallest value of
M(P) > 1 known for P € Z[z]|. Although he did not make a conjecture, the
statement that there exists a constant § > 0 such that the Mahler measure of
any polynomial in Z[z] is either 1 or is greater than 1+ § has become known
as Lehmer’s conjecture. In terms of height, Lehmer’s conjecture states that
there is a universal constant ¢y > 0 such that if « is a non-zero algebraic
number of degree d which is not a root of unity then

co
h > —.
(=%

In 1971 Blanksby and Montgomery [8] and later Stewart [23] produced
bounds for the Mahler measure of such algebraic numbers. These bounds
inspired the work of Dobrowolski [12] who, in 1979, proved for d > 2 that
1 <log log d>3

M 14—
(@) > 1+ 1500 Togd

Many of the best bounds are modifications of Dobrowolski’s bound. The
constants in these bounds have been improved over the years, but the de-
pendence on the degree (for general polynomials) has remained. Of note,
in 1996 Voutier [24] used elementary techniques to show that for d > 2, we
have
1 /loglogd\3

| ey > L (1B10B)?

(1) (@) > 7\ Togd

(Dobrowolski’s bound, when translated into a statement about Weil height,
has a similar form.) Voutier also showed that for d > 2, we have

2
@) hle) > d (log 3d)®’
which gives a better lower bound than (1) for small values of d. For more
details on the history of Lehmer’s conjecture and related problems, see the
excellent survey paper of Smyth [20].

Lehmer’s conjecture has been proven in certain settings. Notably, Breusch
[10] and Smyth [21] independently proved it for non-reciprocal polynomials.
More recently, Borwein, Dobrowolski and Mossinghoff [9] proved it for many
infinite families of polynomials, including polynomials with no cyclotomic
factors and all odd coefficients. (Their result therefore proves Lehmer’s
conjecture for the Littlewood polynomials, namely those polynomials whose
coefficients are £1.)

Results also exist concerning height bounds for a with certain properties.
For example, Amoroso and David [1] have proven that there is an absolute
constant ¢ such that if Q(«)/Q is Galois, and « is not a root of unity, then
h(a) > ed~!. This proves Lehmer’s conjecture for such . Moreover, if a is
any non-zero algebraic number that lies in an abelian extension of Q, then
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Amoroso and Dvornicich [3] have shown that the height of « is greater than
the constant (log5)/12.

Amoroso and Masser [4] improved upon the bounds in [1] for the case
where Q(«)/Q is Galois. They showed that, for any e, the height of « is
bounded below by ¢(e)d™¢. Our first theorem is a generalization of this result
to the case when « generates a Galois extension of an arbitrary number field.

Theorem 1. Let € > 0 be given. Let a be a non-zero algebraic number, not
a root of unity, such that [Q(«) : Q] > 2 and K(«)/K is Galois for some
number field K. Let & be the degree of o over K. Then there is an effectively
computable constant c(e,K) > 0 such that

h(a) > c(e, K)6 2.

Relative height bounds for « in a number field K which is abelian over L.
are given in [6] and [2]. These bounds are similar in shape to Dobrowolski’s
bound.

Theorem 1 determines bounds for h(a) when K(«) /K is Galois, and there-
fore when Q(«r)/K is Galois. Our next theorem determines height bounds
for any element « in a Galois extension F of K which is non-zero and not a
root of unity. This is a generalization of Theorem 3.1 in [4].

Theorem 2. Let K be a number field with degree T over Q. For any positive
integer r > 1 and any € > 0 there is a positive effective constant c(e,r,T)
with the following property. Let F/K be a Galois extension of relative degree
n, and suppose o € F* is not a root of unity. Assume that r conjugates of
a over K are multiplicatively independent. Then

h(e) > cle,r, 7y 71

Theorem 2 is proven in Section 5, where the explicit constants are pre-
sented. Taking r = 1, we have the following corollary as an immediate
consequence.

Corollary 1.1. For any € > 0 there is a positive effective constant c(e, 7)
with the following property. Let F/K be a Galois extension, with [F : K] = n,
and suppose o € F* is not a root of unity. Then

h(a) > c(e, 7')7]7%*6.

The present paper closely follows and builds on the work of Amoroso and
Masser in [4].

2. PRELIMINARIES

In this section, we collect results that will be used in the proofs of Theo-
rem 1 and Theorem 2.
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2.1. Finite linear groups. We will require a bound on the size of finite
subgroups of GL,,(Z) in the proof of Lemma 3.1. We now establish this
bound, following the work of Serre [19].

Proposition 2.1 (Serre). Let A be an abelian variety, and let u be an
automorphism of A of finite order. Let n > 2 be a positive integer such that
w=1 modn. If n =2, then u> = 1. Otherwise, we have u = 1.

The proof of Lemma 3.1 will use the following well-known corollary to
Proposition 2.1 (see also [4, Remark 2.3]).

Corollary 2.2. Let H be a finite subgroup of GL,(Z). The reduction modulo
3 homomorphism ¢3 : H — GL, (Z/3Z) is injective. As a result, the order

of a finite subgroup of GL,(Z) is less than 307,

Proof. Let u be an element in ker(¢3) C H. Then u has finite order and
u = I, mod 3, where I, is the p X p identity matrix. By Proposition 2.1,
we have u = I,. This establishes that ¢3 is injective. We conclude that the
order of H is at most |GL,(Z/3Z)|, which is less than 30%, O

Remark 2.3. In an unpublished paper from 1995, Feit [13] shows that
the maximal order of a finite subgroup of GL,(Q) is 2°p!, except when
p=2,4,6,7,8,9,10. He further shows that for these exceptional cases, the
maximal order is

12,1152, 103680, 2903040, 696729600, 1393459200, 8360755200,

respectively. Therefore, the maximal order of a finite subgroup is at most
13520 p! for all p. See [7] for more information about these subgroups. Ad-
ditionally, in 1997, Friedland showed in [14] that the orthogonal groups are
the maximal subgroups for p large enough.

2.2. Height of algebraic numbers. We will use the following auxiliary
height bounds in our proofs of Theorem 1 and Theorem 2.
The first is Corollary 1.6 of [5].

Proposition 2.4 (Amoroso-Viada). Let aq,...,a, be multiplicatively in-
dependent algebraic numbers in a number field A of degree D = [A : Q).
Then

h(ai) ... h(ew) > D~H(1050n5 log 3D) ™ (+1)°,
The following result is Théoréme 1.3 from [2].

Proposition 2.5 (Amoroso-Delsinne). Let a be a non-zero algebraic number
which is not a root of unity. For every abelian extension A of B, we have

(9(r)A)~¢ (loglog 5D)°
e 2 D (log2D)*

where ¢ is an absolute, strictly positive constant, A is the absolute value of

the discriminant of B over Q, 7 = [B: Q], D = [A(«) : A], and g(7) =1 if

I
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there exists a tower of extensions
Q=ByCB;C---CB,, =B
with B; /B;,_1 Galois fori=1,...m, and g(7) = 7! otherwise.

Remark 2.6. The constant ¢ in Proposition 2.5 depends on a number of
constants defined in [2], as well as on constants from papers of Friedlander
[15] and Stark [22].

Finally, we will use Théoreme 1.6 of [11], in which Q2 denotes the maxi-
mal abelian extension of Q, and G,,(Q) denotes the multiplicative group of

Q.

Proposition 2.7 (Delsinne). For any positive integer n, there exists an
effectively computable constant c(n) > 0 depending only on n for which the
following property holds. Let o = (avy, ..., an) € G (Q). If

[1h(@) < (e(m)@™(@) : Q**)(og(3[Q™(a) : @*)))"™) ",

where k(n) = 3n(2(n + 1)%(n + 1)), then « is contained in a torsion
subvariety B for which

(deg B)Y/<edm®B) < ¢(n)[Q () : Q7™ (log(3[Q (e) : Q2P]))H(™)

where

n(n) = (n —1)! <Z +1>+n—1

and p(n) = 8m!(2(n + 1)%(n + 1)),
In fact, we may take c(n) = (2n?)" exp <64n2n! (2(n+1)*(n+ 1)!)2n>.

Notice that if «aq,...,q, are multiplicatively independent, then o =
(a1, ..., ay) cannot be contained in a torsion subvariety. This simple obser-
vation yields the following corollary to Proposition 2.7.

Corollary 2.8. Let n be a positive integer, and let aq,...,a, be multi-
plicatively independent algebraic numbers. Then there exists an effectively
computable constant c(n) > 0 depending only on n for which

n

[T 2(e) > (e(m)[Q* () : Q] (log(3[Q*(ex) : Q]))*(M) 7,

i=1

where r(n) = 3n(2(n + 1)*(n + 1)),
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2.3. Estimates for ¢(n)/n. We will make use of the following lower bound
for Euler’s totient function, which is a slightly weaker version of [18, Theorem
15).

Proposition 2.9. For all natural numbers n > 3, we have

o(n) _ 1

n exp (v) loglogn + %

Y

where v is FEuler’s constant.

The following lower bound for ¢(n)'*¢/n will be useful in making the
lower bound constants explicit in the proofs of both of our main theorems.

Lemma 2.10. For any € > 0, there is an effective constant C(e) such that

¢(n)1+e

n

> C(e)

for all n > 3. Specifically, one can take

= 1+e
y—— |
(log log 3) (exp( )2+€2€) Hrae

Cle) =

1 . 27z tl
exp (7) + 3T+ (eXp(Q) 2+2e)

Proof. By Proposition 2.9, for all n > 3 we have

o(n) - loglogn
n exp( ) (loglogn)? + 3

We use the fact that logax < (1)9 for any 6 > 0 to replace the power of
loglogn in the denominator and conclude that

o(n) - loglog 3
n n202 '
eXp (7) (exp(1)9)20+2 + 3
Hence,
o(n) S loglog 3 S loglog 3
1-202 — ex ex ’
n p(v) p(y) 4
(exp(1)0) n20% (exp(1)0)** e
which implies that
202 1*%
¢(n)1+1*292 loglog 3 e
n - exp(v) 1-262
e T3
Choosing # such that 20? = T4 completes the proof. O

Remark 2.11. Our lemma holds for all n > 3. By Mertens’ theorem (see,
for example, [17, Theorem 3.15]), ¢(n)/n ~ 1/(exp(7y) loglogn) as n — oo.
Using this, one can obtain sharper lower bounds for n “sufficiently large.”
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3. SOME USEFUL LEMMAS

In this section we prove two lemmas that will be useful in the proof of
Theorem 1.

Lemma 3.1. Let F/K be a Galois extension. Assume that a € F* is not a
root of unity, let ay,...,as be the conjugates of a over K, and let p be the
multiplicative rank of this set of conjugates. Let e be the order of the group
of roots of unity in F, so that Q((.) C F. Then there exists a subfield L of
F which is Galois over K of relative degree [L : K] = n < n(p) < 37", and
af e L.

Proof. Let B; = af, and L = K(fB41,...,85) € F. Then, by construction, L
is Galois over K and «® € L. Consider the multiplicative group

M= {8 B ;€ 2,

which is a Z-module that is multiplicatively spanned by {5, S2,...,08s}-
First, we will show that M is a free Z-module of rank p. It is enough to
show that M is torsion-free as the fact that p is the multiplicative rank of
{a1q,...,as} implies that it is also the multiplicative rank of {f,...,Bs}.
Assume for the sake of contradiction that there exists an z € M such that

x # 1 and 2™ = 1 for some positive integer n > 1. Then z = 7' - ---- B§°
for some aq,...,a5 € Z. Since z" =1, we get

( “L. ﬁgé)”: (aélll .....agé)’w:l'
Hence, y = aj'----- ag® is a root of unity. Since y € IF and e is the order of

the group of roots of unity in F, it follows that x = y© = 1, contrary to our
assumption.

Since Gal(L/K) acts on M by permuting the «;, this action defines an
injective homomorphism from Gal(LL/K) to GL,(Z). This implies that the
finite group Gal(LL/K) is isomorphic to a finite subgroup of GL,(Z). By
Corollary 2.2 the order of a finite subgroup of GL,(Z) is bounded by n(p)
which is at most 37°. We conclude that [L : K] < n(p) < 37 O

Lemma 3.2. Let € > 0 be given. Let K be a number field. Assume that
a is a non-zero algebraic number, not a root of unity, such that K(a)/K is
Galois. Let § be the degree of o over K. Further, let e be the order of the
group of roots of unity in K(«), f be the order of the group of roots of unity
in K, 7 =[K:Q|, and let p be the multiplicative rank of the conjugates of «
over K. Then

[K(a) : K(Ce)] < 5604(K7 6)7

with Cy(K,€) = ﬁn(p)frlﬂ. We have C(e) as in Lemma 2.10 unless
e/f € {1,2} in which case we take C(€) =1/2.
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Proof. We begin by obtaining a few inequalities, proving (3) and (4) below.
By the second isomorphism theorem, we have

K= [0 _ (06 : Q)
K(C): K] = 10(6) KN @ = g rerey 606
0()/6(/)

[KNQ(C) : Q¢H)T

Since [KNQ(¢) : Q(¢r)] < [K: Q(¢y)], we conclude that

L s@)e(f)
() K= g T

It follows from the fact that ¢ is multiplicative that

1o 0(€)/8(F) (%)
(3) RCe) Kl 2 w00, 2 KOG
Next, we will show
§_K:QUEI
(4) o= o

By Lemma 2.10, if ¢/ f > 3 we have the upper bound

35 < o (45))"

If e/f € {1,2}, we can take C'(¢) = 1/2 and this is still satisfied. Again
appealing to the multiplicativity of ¢, we have

85 < 223 = 106 6y < [K(G) : KK : Q(G7)] < 91K Q)

—

Hence, (4) follows by combining these two inequalities.

Now we will proceed to prove the bound for [K(«) : K((.)] stated in the
lemma. By Lemma 3.1 there is a subfield L of K(«) which is Galois over K,
contains o and

(5) [L: K] =n < n(p).

Thus, we have K C L C K(«), so K(a) = L(a).
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Let ¢/ = [L(«) : L]. Since the minimal polynomial for « over L divides
x¢ — af, we conclude that ¢ < e. Using multiple applications of the tower
law, we have

[K(a) : K(Ce)] = [L(er) - L(C)NI(Ce) : K(Ce)]

[L(a) : L]
L) K@), [L:K]
[L(C) : L] [K(Ce) : K]

By (5), we see that

Using (3) we have

. o n(p)
@ K= TRy = o)

Since €’ < e, we conclude that €’ < % f, and hence

/

n(p)[K - Q(¢p)]-

6

- ¢( )
Combining this bound with (4) shows that

[K(a) : K(Ce)] <

n(p) fK = Q(¢y)]-

[K() : K(G)] < r58n(n) K 5 QUG < 5CalKe)

with C4(K, €) = Cie)n(p)fTHE, as needed.
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4. PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1, which generalizes
Theorem 3.3 of [4].

Proof. Let € > 0 be given, let r be the smallest integer greater than 1/¢, and
let 7 = [K: Q]. First consider the case when r > 4, so that

i<r—1< % <.
We will show that h(a) >, 1. For d > 2, using equation (2), we obtain

2
d(log 3d)3"

The function fi(x) = 90(10;7333)3 is decreasing for z > 1. Since Q(«) C K(«)

h(a) >

we have
d=[Q(a): Q] < [K(a) : Q] = [K(e) : K|][K: Q] = 07 < 7/e.

Therefore,
h(a) = fi(r/e) = r/e(1<>g23w/e)3

We can often improve upon this lower bound. Using equation (1) for
d > 2 yields

1 /loglogd\3
h(a) > 7( ) .
(@)= 7\ Togd
Let g1(z) = ﬁ(lolgol%gx)s. The function g¢;(z) is positive for all x > 3 and
decreasing for # > 7. For = = 3,4,5,6, we see that g;(x) achieves its

minimum at g;(3) = 0.00005227953369 .... For d > 7, since d < 7/¢, we
have

h(a) > g1(7/e).
There exists a € (184, 185) such that for x < a we have fi(z) > g1(z), but
for x > a, gi(xz) > fi(z). (In fact, a = 184.615....) We also note that
f1(6) > ¢1(3). We conclude that when r > §, we have h(a) > Ci(e, 1),
where

11(6), if3<d<6and /e <6,
Ci(e,7) = ¢ fi(r/e), if3<d<6and7/e>6, orifd>7and7/e<a,
gi1(7/e), ifd>T7and 7/e> a.
For d = 2, we can use Cy; = f1(2), and for d = 1 we can use C7 = log 2.
We may now assume that r < §. Let p be the multiplicative rank of the
conjugates of o over K.
First, consider the case when p > r. (That is, r of the conjugates of «

over K are multiplicatively independent.) By Proposition 2.4, with D =
[K(a) : Q] = 7, we have

h(a)" > (67)71(1050r° log(357)) " +D*
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using the fact that the Weil heights of conjugate algebraic numbers are equal.
1

Since r > 1, it follows that —1 > —¢, so (67)"* > (67)7¢. Therefore, upon

taking the 7™ roots, with f2(8,7,r) = (10507° log(307))""*1)* we have

(6) h(a) > 0~ 7€ fo(0, T, T).

Sincer —1< %, it follows that » <1 + % SO
s —(1+ )2+
F2(8,7,7) > (1050(1 +1) log(3(57')) .
Using the inequality log(z) < mxel, which holds for any ¢; > 0, we see
that

7(1+%)(2+%)2
fa(6,77) = (1050(1 + 1) Loy (30m) ) .

Taking €; = ¢/(1+ 1)(2+ 1)? we have

7(1+%)(2+l)2

1
050 " (357) .

fa(b,77) = (eexp(l) 1+ 0@+ 1)

We conclude, from (6), that h(a) > Ca(e, 7)0~2¢, where

1050
eexp(1)

Now we may assume that r < § and p < r—1. First, let us establish some
notation. Let e be the order of the group of roots of unity in K(«), let f be
the order of the group of roots of unity in K, and let D = [K(«a) : K(¢)].
By Proposition 2.5, taking A = K({.) and B = K, we conclude that there is
an absolute positive constant ¢ such that

A)~¢ (loglog 5D)°
h(a) > YDA (loglog5 4)
D (log 2D)
where A is the absolute value of the discriminant of K over Q and g(7) =1

if there exists a tower of successive Galois extensions Q =Ky C K; C --- C
K,, =K, and g(7) = 7! otherwise.

3
Notice that the function f(x) = %% is decreasing for all z > 1.

2>(1+i)<2+i)2.

Cale,) = 77237( (1+ 152+

By Lemma 3.2 we have
D = [K(a) : K(()] < 0°Cy(K,¢)

with Cy(K,€) = Cie)n(p)fTHE. Therefore,

3
h(a) > (g(T)A)~¢ (loglog(5C4 (K, €)6))
~ Cu(K, )0 (log(2C4(K, €)6¢))"

It remains to show that thisis >, x 6~2¢. The constant C(¢) from Lemma 2.10

is easily seen to be positive and less than 1, which implies that Cy(K,€) > 1.
Moreover, for all y > 1, we have
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y (log log 5y)°
(log 2y)*
Since C4(K, €)é¢ > 1, we conclude that
(log log(5C4(K, €)5°))* . 1
(log(2C4 (K, €)d))*  — 4C4(K, €)d¢’
We have shown that

1
> —.
— 4

h(a) > 67%C5(K, €),

where C5(K,€) = % and C(e) is the constant from Lemma 2.10.
Since we are assuming that p < r — 1 < 1/e, then n(p) < 37" < 3(1/9°,
Thus, we have

h(a) > 6 *Cs(K, e),

T)A)~C ()2
where C3(K, €) = %'

O

Remark 4.1. Recall that, if Q(a)/K is Galois, then since K C Q(«), it
follows that K(a) = Q(«). Therefore, this theorem also applies to the case
where Q(a) /K is Galois.

5. PROOF OF THEOREM 2
We prove Theorem 2 below.

Proof. Let aq,...,as be the conjugates of « over K, and let p be their mul-
tiplicative rank. As a result, § < 7. Since we assume that r conjugates of «
over K are multiplicatively independent, we know that p > r.

Case 1 (p > r): If the multiplicative rank of the conjugates of a over K
is strictly larger than r, we know that there exists a subset

{ailvaizv v 7air+1} C {011, ag, ... 7a6}
such that «;,, iy, ..., ;. ., are distinct and multiplicatively independent.
By Proposition 2.4,

h(ai)h(as) - h(os,.,) > D™ (1050(r + 1)° log(3D)) "+ +2”"

I

where D = [Q(w,, ..., ;) : Q. Since the o; are all conjugates, they all
have the same height, so the left hand side of this inequality is h(a) . In
addition,

D = [Q(aiy, .-y 04,,,) Q< [F:Q] = [F:K|[K: Q] =nr.
Upon taking (r + 1)t roots, it follows that

h(ar) = T_iﬁ_ﬁ (1050(r + 1)° log(3ﬂ7))7(”1)(1%2)2 )
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Recall that logz <

¢ for any €; > 0. By applying this inequality

€1 exp(l)
with €; = m, we get an explicit lower bound for h(«) in the desired
form,
B(a) > Cale,r,m)n 71,
where

2
Calerr) =3¢ (1050(r +1)5(r + 2)2> (r+1)(r+2) T
eexp(1l)

Case 2 (p = r): Let a;,,,...,q; be multiplicatively independent
conjugates of a over K. We denote by e the order of the group of roots of
unity in F so that Q({) C F. By Lemma 3.1 we know that there exists a
subfield L of F which is Galois over K such that a® € L and [L : K] = n <
n(r) < 3. By (1), we have

g I (loglog([Q(a): Q)
o) 2 g (eetiae @)
provided af € Q. Now,

Q%) : Q] < [L:Q]=[L:K]K:Q] < n(r)r.

As in the proof of Theorem 1, we can use the properties of the function
g1(z) previously defined to obtain

1 1 1 log log(n(r)7)\*
7 h = —h(a®) > -
@ (@) e (o) 2 edn(r)r ( log(n(r)T)
whenever [Q(af) : Q] > 7. When n(r)r < 184, this can be improved by
usmg fi(x) in place of gi(x), as before, and similarly, we use fi(x) when

)

< [Q(af) : Q] £ 6. For [Q(af) : Q] = 2, we have h(a) > 1f,(2), and for
[Q(ae) : Q] = 1 we have h(a) > 2log2. For the remainder of the proof, we
focus on the case given in equation (7), and trust the reader to make the
appropriate substitutions.

On the other hand, Corollary 2.8 implies that with o = (v, ..., ;) we
have
-1

hla)” > (ex)[e™(a) : @) (log (310 : @) ")
where sia(r) = 3r (2(r + 1*(r +1)1)" and

ea(r) = (2r2) exp (64r2r! (2(r +1)%(r + 1)!)2’”) .
Using the bound

[F: Q] ™

ab . mab o) . —
[Q(a) : Q] < [Q(C) (@) : Q(Ce)] < [F: Q(Ce)] Q)T ~ ae)
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we conclude that

® by > (catr) 75 (108 q;(z)))“(’”’)“.

Combining equations (7) and (8) yields

3 >))_mm7

(
where Ci(r,1,e) = CQ(T)_l(loilgo(i(g,()?;))in(}q)ﬂ ¢Ef). We now apply the in-

h(a)™™ > Cy(r,7,e)n~? <log(3 !

equality logz < mmel with €; = €/ka(r) and = = 3% and conclude
that - -
ha) T > O 1 () TR TN
()" > Calr,mye)n (eexp(l)) < d)(e))

This simplifies to
h(a)™ > Cole,r,1,e)n™ 1€
. n(r)TI\3 [ ka(r —rz2(r) Ite
R N P ST
2.10, ¢p(e)1*¢/e > C(e), so that we can replace Ca(e,r, T,¢€) in the inequality
by

_ (loglog(n(r)T)\3 / Ka(r) \—r2() C(e)
0 = Cogiatn ) (compm)  nwestrzrse

and upon taking (r + 1) roots we have

1 €

h(a) > Cy(e,r, )iy w7,
Using the fact that n=¢/"+1) > =€ we get the bound

]’L(OZ) > O3(€7 T, T)?llniﬁllie'
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