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Abstract. The goal of this paper is to obtain lower bounds on the
height of an algebraic number in a relative setting, extending previous
work of Amoroso and Masser. Specifically, in our first theorem we obtain
an e↵ective bound for the height of an algebraic number ↵ when the
base field K is a number field and K(↵)/K is Galois. Our second result
establishes an explicit height bound for any non-zero element ↵ which is
not a root of unity in a Galois extension F/K, depending on the degree
of K/Q and the number of conjugates of ↵ which are multiplicatively
independent over K. As a consequence, we obtain a height bound for
such ↵ that is independent of the multiplicative independence condition.

1. Introduction

Consider the non-constant polynomial

P (x) = c
d

xd + c
d�1x

d�1 + · · ·+ c1x+ c0 = c
d

dY

i=1

(x� r
i

).

The Mahler measure of P (x) is defined as

M(P ) = exp
⇣Z 1

0
log |P (e2⇡it)| dt

⌘
,

the geometric mean of |P (z)| for z on the unit circle. By Jensen’s formula,
this is equivalent to

M(P ) = |c
d

|
Y

|ri|�1

|r
i

|.

If P (x) has integer coe�cients, then M(P ) � 1; by a result of Kronecker,
M(P ) = 1 exactly when P (x) is a power of x times a product of cyclotomic
polynomials.

Given an algebraic number ↵, we let d = [Q(↵) : Q] be its degree over Q.
We will use M(↵) to denote the Mahler measure of the minimal polynomial
of ↵ over Z. We will formulate our results in terms of the Weil height of ↵,
defined to be

h(↵) = 1
d

logM(↵).

2010 Mathematics Subject Classification. 11G50.
Key words and phrases. Hight of algebraic numbers, Lehmer’s Problem.

1
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In [16] Lehmer asked whether there are monic integer polynomials whose
Mahler measure is arbitrarily close to 1. For the polynomial L(x) = x10 +
x9 � x7 � x6 � x5 � x4 � x3 + x + 1 (now called Lehmer’s polynomial),
he calculated M(L) = 1.176280818 . . . , which is still the smallest value of
M(P ) > 1 known for P 2 Z[x]. Although he did not make a conjecture, the
statement that there exists a constant � > 0 such that the Mahler measure of
any polynomial in Z[x] is either 1 or is greater than 1+� has become known
as Lehmer’s conjecture. In terms of height, Lehmer’s conjecture states that
there is a universal constant c0 > 0 such that if ↵ is a non-zero algebraic
number of degree d which is not a root of unity then

h(↵) � c0
d
.

In 1971 Blanksby and Montgomery [8] and later Stewart [23] produced
bounds for the Mahler measure of such algebraic numbers. These bounds
inspired the work of Dobrowolski [12] who, in 1979, proved for d � 2 that

M(↵) > 1 +
1

1200

⇣ log log d
log d

⌘3
.

Many of the best bounds are modifications of Dobrowolski’s bound. The
constants in these bounds have been improved over the years, but the de-
pendence on the degree (for general polynomials) has remained. Of note,
in 1996 Voutier [24] used elementary techniques to show that for d � 2, we
have

(1) h(↵) >
1

4d

⇣ log log d
log d

⌘3
.

(Dobrowolski’s bound, when translated into a statement about Weil height,
has a similar form.) Voutier also showed that for d � 2, we have

(2) h(↵) >
2

d (log 3d)3
,

which gives a better lower bound than (1) for small values of d. For more
details on the history of Lehmer’s conjecture and related problems, see the
excellent survey paper of Smyth [20].

Lehmer’s conjecture has been proven in certain settings. Notably, Breusch
[10] and Smyth [21] independently proved it for non-reciprocal polynomials.
More recently, Borwein, Dobrowolski and Mossingho↵ [9] proved it for many
infinite families of polynomials, including polynomials with no cyclotomic
factors and all odd coe�cients. (Their result therefore proves Lehmer’s
conjecture for the Littlewood polynomials, namely those polynomials whose
coe�cients are ±1.)

Results also exist concerning height bounds for ↵ with certain properties.
For example, Amoroso and David [1] have proven that there is an absolute
constant c such that if Q(↵)/Q is Galois, and ↵ is not a root of unity, then
h(↵) � cd�1. This proves Lehmer’s conjecture for such ↵. Moreover, if ↵ is
any non-zero algebraic number that lies in an abelian extension of Q, then
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Amoroso and Dvornicich [3] have shown that the height of ↵ is greater than
the constant (log 5)/12.

Amoroso and Masser [4] improved upon the bounds in [1] for the case
where Q(↵)/Q is Galois. They showed that, for any ✏, the height of ↵ is
bounded below by c(✏)d�✏. Our first theorem is a generalization of this result
to the case when ↵ generates a Galois extension of an arbitrary number field.

Theorem 1. Let ✏ > 0 be given. Let ↵ be a non-zero algebraic number, not
a root of unity, such that [Q(↵) : Q] � 2 and K(↵)/K is Galois for some
number field K. Let � be the degree of ↵ over K. Then there is an e↵ectively
computable constant c(✏,K) > 0 such that

h(↵) � c(✏,K)��2✏.

Relative height bounds for ↵ in a number field K which is abelian over L
are given in [6] and [2]. These bounds are similar in shape to Dobrowolski’s
bound.

Theorem 1 determines bounds for h(↵) when K(↵)/K is Galois, and there-
fore when Q(↵)/K is Galois. Our next theorem determines height bounds
for any element ↵ in a Galois extension F of K which is non-zero and not a
root of unity. This is a generalization of Theorem 3.1 in [4].

Theorem 2. Let K be a number field with degree ⌧ over Q. For any positive
integer r � 1 and any ✏ > 0 there is a positive e↵ective constant c(✏, r, ⌧)
with the following property. Let F/K be a Galois extension of relative degree
⌘, and suppose ↵ 2 F⇤ is not a root of unity. Assume that r conjugates of
↵ over K are multiplicatively independent. Then

h(↵) � c(✏, r, ⌧)⌘�
1

r+1�✏.

Theorem 2 is proven in Section 5, where the explicit constants are pre-
sented. Taking r = 1, we have the following corollary as an immediate
consequence.

Corollary 1.1. For any ✏ > 0 there is a positive e↵ective constant c(✏, ⌧)
with the following property. Let F/K be a Galois extension, with [F : K] = ⌘,
and suppose ↵ 2 F⇤ is not a root of unity. Then

h(↵) � c(✏, ⌧)⌘�
1
2�✏.

The present paper closely follows and builds on the work of Amoroso and
Masser in [4].

2. Preliminaries

In this section, we collect results that will be used in the proofs of Theo-
rem 1 and Theorem 2.
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2.1. Finite linear groups. We will require a bound on the size of finite
subgroups of GL

n

(Z) in the proof of Lemma 3.1. We now establish this
bound, following the work of Serre [19].

Proposition 2.1 (Serre). Let A be an abelian variety, and let u be an
automorphism of A of finite order. Let n � 2 be a positive integer such that
u ⌘ 1 mod n. If n = 2, then u2 = 1. Otherwise, we have u = 1.

The proof of Lemma 3.1 will use the following well-known corollary to
Proposition 2.1 (see also [4, Remark 2.3]).

Corollary 2.2. Let H be a finite subgroup of GL
⇢

(Z). The reduction modulo
3 homomorphism �3 : H ! GL

⇢

(Z/3Z) is injective. As a result, the order

of a finite subgroup of GL
⇢

(Z) is less than 3⇢
2
.

Proof. Let u be an element in ker(�3) ⇢ H. Then u has finite order and
u ⌘ I

⇢

mod 3, where I
⇢

is the ⇢ ⇥ ⇢ identity matrix. By Proposition 2.1,
we have u = I

⇢

. This establishes that �3 is injective. We conclude that the

order of H is at most |GL
⇢

(Z/3Z)|, which is less than 3⇢
2
. ⇤

Remark 2.3. In an unpublished paper from 1995, Feit [13] shows that
the maximal order of a finite subgroup of GL

⇢

(Q) is 2⇢⇢!, except when
⇢ = 2, 4, 6, 7, 8, 9, 10. He further shows that for these exceptional cases, the
maximal order is

12, 1152, 103680, 2903040, 696729600, 1393459200, 8360755200,

respectively. Therefore, the maximal order of a finite subgroup is at most
135
2 2⇢⇢! for all ⇢. See [7] for more information about these subgroups. Ad-
ditionally, in 1997, Friedland showed in [14] that the orthogonal groups are
the maximal subgroups for ⇢ large enough.

2.2. Height of algebraic numbers. We will use the following auxiliary
height bounds in our proofs of Theorem 1 and Theorem 2.

The first is Corollary 1.6 of [5].

Proposition 2.4 (Amoroso-Viada). Let ↵1, . . . ,↵n

be multiplicatively in-
dependent algebraic numbers in a number field A of degree D = [A : Q].
Then

h(↵1) . . . h(↵n

) � D�1(1050n5 log 3D)�n

2(n+1)2 .

The following result is Théorème 1.3 from [2].

Proposition 2.5 (Amoroso-Delsinne). Let ↵ be a non-zero algebraic number
which is not a root of unity. For every abelian extension A of B, we have

h(↵) � (g(⌧)�)�c

D

(log log 5D)3

(log 2D)4
,

where c is an absolute, strictly positive constant, � is the absolute value of
the discriminant of B over Q, ⌧ = [B : Q], D = [A(↵) : A], and g(⌧) = 1 if
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there exists a tower of extensions

Q = B0 ⇢ B1 ⇢ · · · ⇢ B
m

= B

with B
i

/B
i�1 Galois for i = 1, . . .m, and g(⌧) = ⌧ ! otherwise.

Remark 2.6. The constant c in Proposition 2.5 depends on a number of
constants defined in [2], as well as on constants from papers of Friedlander
[15] and Stark [22].

Finally, we will use Théorème 1.6 of [11], in which Qab denotes the maxi-
mal abelian extension of Q, and G

m

(Q) denotes the multiplicative group of
Q.

Proposition 2.7 (Delsinne). For any positive integer n, there exists an
e↵ectively computable constant c(n) > 0 depending only on n for which the
following property holds. Let ↵ = (↵1, . . . ,↵n

) 2 Gn

m

(Q). If

nY

i=1

h(↵
i

) 
�
c(n)[Qab(↵) : Qab](log(3[Qab(↵) : Qab]))(n)

��1
,

where (n) = 3n(2(n + 1)2(n + 1)!)n, then ↵ is contained in a torsion
subvariety B for which

(degB)1/codim(B)  c(n)[Qab(↵) : Qab]⌘(n)(log(3[Qab(↵) : Qab]))µ(n),

where

⌘(n) = (n� 1)!

✓
n�3X

i=0

1

i!
+ 1

◆
+ n� 1

and µ(n) = 8m!(2(n+ 1)2(n+ 1)!)n.

In fact, we may take c(n) = (2n2)n exp
⇣
64n2n!

�
2(n+ 1)2(n+ 1)!

�2n⌘
.

Notice that if ↵1, . . . ,↵n

are multiplicatively independent, then ↵ =
(↵1, . . . ,↵n

) cannot be contained in a torsion subvariety. This simple obser-
vation yields the following corollary to Proposition 2.7.

Corollary 2.8. Let n be a positive integer, and let ↵1, . . . ,↵n

be multi-
plicatively independent algebraic numbers. Then there exists an e↵ectively
computable constant c(n) > 0 depending only on n for which

nY

i=1

h(↵
i

) >
�
c(n)[Qab(↵) : Qab](log(3[Qab(↵) : Qab]))(n)

��1
,

where (n) = 3n(2(n+ 1)2(n+ 1)!)n.
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2.3. Estimates for �(n)/n. We will make use of the following lower bound
for Euler’s totient function, which is a slightly weaker version of [18, Theorem
15].

Proposition 2.9. For all natural numbers n � 3, we have

�(n)

n
>

1

exp (�) log log n+ 3
log logn

,

where � is Euler’s constant.

The following lower bound for �(n)1+✏/n will be useful in making the
lower bound constants explicit in the proofs of both of our main theorems.

Lemma 2.10. For any ✏ > 0, there is an e↵ective constant C(✏) such that

�(n)1+✏

n
� C(✏)

for all n � 3. Specifically, one can take

C(✏) =

0

B@
(log log 3)

⇣
exp(2) ✏

2+2✏

⌘p ✏
2+2✏+1

exp (�) + 3
1

1+✏

⇣
exp(2) ✏

2+2✏

⌘p ✏
2+2✏+1

1

CA

1+✏

.

Proof. By Proposition 2.9, for all n � 3 we have

�(n)

n
>

log log n

exp (�) (log log n)2 + 3
.

We use the fact that log x  x

✓

exp(1)✓ for any ✓ > 0 to replace the power of
log log n in the denominator and conclude that

�(n)

n
>

log log 3

exp (�) n

2✓2

(exp(1)✓)2✓+2 + 3
.

Hence,
�(n)

n1�2✓2
� log log 3

exp(�)

(exp(1)✓)2✓+2 + 3
n

2✓2

� log log 3
exp(�)

(exp(1)✓)2✓+2 + 3
32✓2

,

which implies that

�(n)
1+ 2✓2

1�2✓2

n
�

0

@ log log 3
exp(�)

(exp(1)✓)2✓+2 + 31�2✓2

1

A
1+ 2✓2

1�2✓2

.

Choosing ✓ such that 2✓2 = ✏

1+✏

completes the proof. ⇤

Remark 2.11. Our lemma holds for all n � 3. By Mertens’ theorem (see,
for example, [17, Theorem 3.15]), �(n)/n ⇠ 1/(exp(�) log log n) as n ! 1.
Using this, one can obtain sharper lower bounds for n “su�ciently large.”
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3. Some Useful Lemmas

In this section we prove two lemmas that will be useful in the proof of
Theorem 1.

Lemma 3.1. Let F/K be a Galois extension. Assume that ↵ 2 F⇤ is not a
root of unity, let ↵1, . . . ,↵

�

be the conjugates of ↵ over K, and let ⇢ be the
multiplicative rank of this set of conjugates. Let e be the order of the group
of roots of unity in F, so that Q(⇣

e

) ⇢ F. Then there exists a subfield L of
F which is Galois over K of relative degree [L : K] = n  n(⇢) < 3⇢

2
, and

↵e 2 L.

Proof. Let �
i

= ↵e

i

, and L = K(�1, . . . ,�
�

) ✓ F. Then, by construction, L
is Galois over K and ↵e 2 L. Consider the multiplicative group

M = {�a1
1 · · · · · �a�

�

: a
i

2 Z},

which is a Z-module that is multiplicatively spanned by {�1,�2, . . . ,�
�

}.
First, we will show that M is a free Z-module of rank ⇢. It is enough to
show that M is torsion-free as the fact that ⇢ is the multiplicative rank of
{↵1, . . . ,↵

�

} implies that it is also the multiplicative rank of {�1, . . . ,�
�

}.
Assume for the sake of contradiction that there exists an x 2 M such that
x 6= 1 and xn = 1 for some positive integer n > 1. Then x = �a1

1 · · · · · �a�
�

for some a1, . . . , a
�

2 Z. Since xn = 1, we get

�
�a1
1 · · · · · �a�

�

�
n

=
�
↵a1
1 · · · · · ↵a�

�

�
ne

= 1.

Hence, y = ↵a1
1 · · · · ·↵a�

�

is a root of unity. Since y 2 F and e is the order of
the group of roots of unity in F, it follows that x = ye = 1, contrary to our
assumption.

Since Gal(L/K) acts on M by permuting the ↵
i

, this action defines an
injective homomorphism from Gal(L/K) to GL

⇢

(Z). This implies that the
finite group Gal(L/K) is isomorphic to a finite subgroup of GL

⇢

(Z). By
Corollary 2.2 the order of a finite subgroup of GL

⇢

(Z) is bounded by n(⇢)

which is at most 3⇢
2
. We conclude that [L : K]  n(⇢) < 3⇢

2
. ⇤

Lemma 3.2. Let ✏ > 0 be given. Let K be a number field. Assume that
↵ is a non-zero algebraic number, not a root of unity, such that K(↵)/K is
Galois. Let � be the degree of ↵ over K. Further, let e be the order of the
group of roots of unity in K(↵), f be the order of the group of roots of unity
in K, ⌧ = [K : Q], and let ⇢ be the multiplicative rank of the conjugates of ↵
over K. Then

[K(↵) : K(⇣
e

)]  �✏C4(K, ✏),

with C4(K, ✏) = 1
C(✏)n(⇢)f⌧

1+✏. We have C(✏) as in Lemma 2.10 unless

e/f 2 {1, 2} in which case we take C(✏) = 1/2.
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Proof. We begin by obtaining a few inequalities, proving (3) and (4) below.
By the second isomorphism theorem, we have

[K(⇣
e

) : K] = [Q(⇣
e

) : K \Q(⇣
e

)] =
[Q(⇣

e

) : Q(⇣
f

)]

[K \Q(⇣
e

) : Q(⇣
f

)]

=
�(e)/�(f)

[K \Q(⇣
e

) : Q(⇣
f

)]
.

Since [K \Q(⇣
e

) : Q(⇣
f

)]  [K : Q(⇣
f

)], we conclude that

[K(⇣
e

) : K] � �(e)/�(f)

[K : Q(⇣
f

)]
.

It follows from the fact that � is multiplicative that

(3) [K(⇣
e

) : K] � �(e)/�(f)

[K : Q(⇣
f

)]
�

�( e
f

)

[K : Q(⇣
f

)]
.

Next, we will show

(4)
e

f

�( e
f

)


[K : Q(⇣
f

)]✏

C(✏)
�✏.

By Lemma 2.10, if e/f � 3 we have the upper bound

e

f

�( e
f

)
 1

C(✏)

⇣
�( e

f

)
⌘
✏

.

If e/f 2 {1, 2}, we can take C(✏) = 1/2 and this is still satisfied. Again
appealing to the multiplicativity of �, we have

�( e
f

)  �(e)

�(f)
= [Q(⇣

e

) : Q(⇣
f

)]  [K(⇣
e

) : K][K : Q(⇣
f

)]  �[K : Q(⇣
f

)].

Hence, (4) follows by combining these two inequalities.
Now we will proceed to prove the bound for [K(↵) : K(⇣

e

)] stated in the
lemma. By Lemma 3.1 there is a subfield L of K(↵) which is Galois over K,
contains ↵e and

[L : K] = n  n(⇢).(5)

Thus, we have K ✓ L ✓ K(↵), so K(↵) = L(↵).
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Q

K

L K(⇣
e

)

L(⇣
e

)

L(↵) = K(↵)

Let e0 = [L(↵) : L]. Since the minimal polynomial for ↵ over L divides
xe � ↵e, we conclude that e0  e. Using multiple applications of the tower
law, we have

[K(↵) : K(⇣
e

)] = [L(↵) : L(⇣
e

)][L(⇣
e

) : K(⇣
e

)]

= [L(⇣
e

) : K(⇣
e

)]
[L(↵) : L]
[L(⇣

e

) : L]

= e0
[L(⇣

e

) : K(⇣
e

)]

[L(⇣
e

) : L] = e0
[L : K]

[K(⇣
e

) : K]
.

By (5), we see that

[K(↵) : K(⇣
e

)]  e0
n(⇢)

[K(⇣
e

) : K]
.

Using (3) we have

[K(↵) : K(⇣
e

)]  e0
n(⇢)

[K(⇣
e

) : K]
 e0

�( e
f

)
n(⇢)[K : Q(⇣

f

)].

Since e0  e, we conclude that e0  e

f

f , and hence

[K(↵) : K(⇣
e

)] 
e

f

�( e
f

)
n(⇢)f [K : Q(⇣

f

)].

Combining this bound with (4) shows that

[K(↵) : K(⇣
e

)]  1

C(✏)
�✏n(⇢)f [K : Q(⇣

f

)]1+✏  �✏C4(K, ✏)

with C4(K, ✏) = 1
C(✏)n(⇢)f⌧

1+✏, as needed.
⇤
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4. Proof Of Theorem 1

In this section, we present the proof of Theorem 1, which generalizes
Theorem 3.3 of [4].

Proof. Let ✏ > 0 be given, let r be the smallest integer greater than 1/✏, and
let ⌧ = [K : Q]. First consider the case when r > �, so that

�  r � 1  1
✏

< r.

We will show that h(↵) �
⌧,✏

1. For d � 2, using equation (2), we obtain

h(↵) � 2

d(log 3d)3
.

The function f1(x) =
2

x(log 3x)3 is decreasing for x � 1. Since Q(↵) ⇢ K(↵)

we have

d = [Q(↵) : Q]  [K(↵) : Q] = [K(↵) : K][K : Q] = �⌧  ⌧/✏.

Therefore,

h(↵) � f1(⌧/✏) =
2

⌧/✏(log 3⌧/✏)3
.

We can often improve upon this lower bound. Using equation (1) for
d � 2 yields

h(↵) � 1

4d

⇣ log log d
log d

⌘3
.

Let g1(x) =
1
4x

� log log x
log x

�3
. The function g1(x) is positive for all x � 3 and

decreasing for x � 7. For x = 3, 4, 5, 6, we see that g1(x) achieves its
minimum at g1(3) = 0.00005227953369 . . . . For d � 7, since d  ⌧/✏, we
have

h(↵) � g1(⌧/✏).

There exists a 2 (184, 185) such that for x  a we have f1(x) > g1(x), but
for x � a, g1(x) > f1(x). (In fact, a = 184.615 . . . .) We also note that
f1(6) > g1(3). We conclude that when r > �, we have h(↵) � C1(✏, ⌧),
where

C1(✏, ⌧) =

8
><

>:

f1(6), if 3  d  6 and ⌧/✏ < 6,

f1(⌧/✏), if 3  d  6 and ⌧/✏ � 6, or if d � 7 and ⌧/✏  a,

g1(⌧/✏), if d � 7 and ⌧/✏ � a.

For d = 2, we can use C1 = f1(2), and for d = 1 we can use C1 = log 2.
We may now assume that r  �. Let ⇢ be the multiplicative rank of the

conjugates of ↵ over K.
First, consider the case when ⇢ � r. (That is, r of the conjugates of ↵

over K are multiplicatively independent.) By Proposition 2.4, with D =
[K(↵) : Q] = �⌧ , we have

h(↵)r � (�⌧)�1(1050r5 log(3�⌧))�r

2(r+1)2
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using the fact that the Weil heights of conjugate algebraic numbers are equal.

Since r > 1
✏

, it follows that �1
r

> �✏, so (�⌧)�
1
r > (�⌧)�✏. Therefore, upon

taking the rth roots, with f2(�, ⌧, r) = (1050r5 log(3�⌧))�r(r+1)2 we have

h(↵) > ��✏⌧�✏f2(�, ⌧, r).(6)

Since r � 1  1
✏

, it follows that r  1 + 1
✏

so

f2(�, ⌧, r) �
⇣
1050(1 + 1

✏

)5 log(3�⌧)
⌘�(1+

1
✏

)(2+
1
✏

)2

.

Using the inequality log(x)  1
✏1 exp(1)

x✏1 , which holds for any ✏1 > 0, we see
that

f2(�, ⌧, r) �
⇣
1050(1 + 1

✏

)5 1
✏1 exp(1)

(3�⌧)✏1
⌘�(1+

1
✏

)(2+
1
✏

)2

.

Taking ✏1 = ✏/(1 + 1
✏

)(2 + 1
✏

)2 we have

f2(�, ⌧, r) �
⇣ 1050

✏ exp(1)
(1 + 1

✏

)6(2 + 1
✏

)2
⌘�(1+

1
✏

)(2+
1
✏

)2

(3�⌧)�✏.

We conclude, from (6), that h(↵) � C2(✏, ⌧)��2✏, where

C2(✏, ⌧) = ⌧�2✏3�✏

⇣ 1050

✏ exp(1)
(1 + 1

✏

)6(2 + 1
✏

)2
⌘�(1+

1
✏

)(2+
1
✏

)2

.

Now we may assume that r  � and ⇢  r�1. First, let us establish some
notation. Let e be the order of the group of roots of unity in K(↵), let f be
the order of the group of roots of unity in K, and let D = [K(↵) : K(⇣

e

)].
By Proposition 2.5, taking A = K(⇣

e

) and B = K, we conclude that there is
an absolute positive constant c such that

h(↵) � (g(⌧)�)�c

D

(log log 5D)3

(log 2D)4
,

where � is the absolute value of the discriminant of K over Q and g(⌧) = 1
if there exists a tower of successive Galois extensions Q = K0 ⇢ K1 ⇢ · · · ⇢
K

m

= K, and g(⌧) = ⌧ ! otherwise.

Notice that the function f(x) = 1
x

(log log 5x)3

(log 2x)4
is decreasing for all x � 1.

By Lemma 3.2 we have

D = [K(↵) : K(⇣
e

)]  �✏C4(K, ✏)

with C4(K, ✏) = 1
C(✏)n(⇢)f⌧

1+✏. Therefore,

h(↵) � (g(⌧)�)�c

C4(K, ✏)�✏

�
log log(5C4(K, ✏)�✏)

�3
�
log(2C4(K, ✏)�✏)

�4 .

It remains to show that this is�
⇢,K ��2✏. The constant C(✏) from Lemma 2.10

is easily seen to be positive and less than 1, which implies that C4(K, ✏) � 1.
Moreover, for all y � 1, we have
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y (log log 5y)3

(log 2y)4
� 1

4
.

Since C4(K, ✏)�✏ � 1, we conclude that

(log log(5C4(K, ✏)�✏))3

(log(2C4(K, ✏)�✏))4
� 1

4C4(K, ✏)�✏
.

We have shown that

h(↵) � ��2✏C5(K, ✏),

where C5(K, ✏) = (g(⌧)�)�c
C(✏)2

4(n(⇢)f⌧1+✏)2 and C(✏) is the constant from Lemma 2.10.

Since we are assuming that ⇢  r � 1 < 1/✏, then n(⇢) < 3⇢
2
< 3(1/✏)

2
.

Thus, we have

h(↵) � ��2✏C3(K, ✏),

where C3(K, ✏) = (g(⌧)�)�c
C(✏)2

4(3(1/✏)2f⌧1+✏)2
.

⇤
Remark 4.1. Recall that, if Q(↵)/K is Galois, then since K ⇢ Q(↵), it
follows that K(↵) = Q(↵). Therefore, this theorem also applies to the case
where Q(↵)/K is Galois.

5. Proof of Theorem 2

We prove Theorem 2 below.

Proof. Let ↵1, . . . ,↵
�

be the conjugates of ↵ over K, and let ⇢ be their mul-
tiplicative rank. As a result, �  ⌘. Since we assume that r conjugates of ↵
over K are multiplicatively independent, we know that ⇢ � r.

Case 1 (⇢ > r): If the multiplicative rank of the conjugates of ↵ over K
is strictly larger than r, we know that there exists a subset

{↵
i1 ,↵i2 , . . . ,↵ir+1} ⇢ {↵1,↵2, . . . ,↵

�

}

such that ↵
i1 ,↵i2 , . . . ,↵ir+1 are distinct and multiplicatively independent.

By Proposition 2.4,

h(↵
i1)h(↵i2) · · ·h(↵ir+1) � D�1

�
1050(r + 1)5 log(3D)

��(r+1)2(r+2)2
,

where D = [Q(↵
i1 , . . . ,↵ir+1) : Q]. Since the ↵

i

are all conjugates, they all
have the same height, so the left hand side of this inequality is h(↵)r+1. In
addition,

D = [Q(↵
i1 , . . . ,↵ir+1) : Q]  [F : Q] = [F : K][K : Q] = ⌘⌧.

Upon taking (r + 1)st roots, it follows that

h(↵) � ⌧�
1

r+1 ⌘�
1

r+1
�
1050(r + 1)5 log(3⌧⌘)

��(r+1)(r+2)2
.
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Recall that log x  1
✏1 exp(1)

x✏1 for any ✏1 > 0. By applying this inequality

with ✏1 =
✏

(r+1)(r+2)2 , we get an explicit lower bound for h(↵) in the desired

form,

h(↵) � C1(✏, r, ⌧)⌘
� 1

r+1�✏,

where

C1(✏, r, ⌧) = 3�✏

✓
1050(r + 1)6(r + 2)2

✏ exp(1)

◆�(r+1)(r+2)2

⌧�
1

r+1�✏.

Case 2 (⇢ = r): Let ↵
i1 ,↵i2 , . . . ,↵ir be multiplicatively independent

conjugates of ↵ over K. We denote by e the order of the group of roots of
unity in F so that Q(⇣

e

) ⇢ F. By Lemma 3.1 we know that there exists a
subfield L of F which is Galois over K such that ↵e 2 L and [L : K] = n 
n(r) < 3r

2
. By (1), we have

h(↵e) � 1

4[Q(↵e) : Q]

✓
log log([Q(↵e) : Q])

log([Q(↵e) : Q])

◆3

,

provided ↵e 62 Q. Now,

[Q(↵e) : Q]  [L : Q] = [L : K][K : Q]  n(r)⌧.

As in the proof of Theorem 1, we can use the properties of the function
g1(x) previously defined to obtain

(7) h(↵) =
1

e
h(↵e) � 1

e

1

4n(r)⌧

✓
log log(n(r)⌧)

log(n(r)⌧)

◆3

whenever [Q(↵e) : Q] � 7. When n(r)⌧  184, this can be improved by
using f1(x) in place of g1(x), as before, and similarly, we use f1(x) when
3  [Q(↵e) : Q]  6. For [Q(↵e) : Q] = 2, we have h(↵) � 1

e

f1(2), and for
[Q(↵e) : Q] = 1 we have h(↵) � 1

e

log 2. For the remainder of the proof, we
focus on the case given in equation (7), and trust the reader to make the
appropriate substitutions.

On the other hand, Corollary 2.8 implies that with ↵ = (↵
i1 , . . . ,↵ir) we

have

h(↵)r >

✓
c2(r)[Qab(↵) : Qab]

⇣
log

�
3[Qab(↵) : Qab]

�⌘2(r)
◆�1

,

where 2(r) = 3r
�
2(r + 1)2(r + 1)!

�
r

and

c2(r) = (2r2)r exp
⇣
64r2r!

�
2(r + 1)2(r + 1)!

�2r⌘
.

Using the bound

[Qab(↵) : Qab]  [Q(⇣
e

)(↵) : Q(⇣
e

)]  [F : Q(⇣
e

)] =
[F : Q]

[Q(⇣
e

) : Q]
=

⌧⌘

�(e)
,
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we conclude that

(8) h(↵)r >

✓
c2(r)

⌧⌘

�(e)

⇣
log

�
3
⌧⌘

�(e)

�⌘2(r)
◆�1

.

Combining equations (7) and (8) yields

h(↵)r+1 > C1(r, ⌧, e)⌘
�1

⇣
log(3 ⌧⌘

�(e))
⌘�2(r)

,

where C1(r, ⌧, e) = c2(r)�1
� log log(n(r)⌧)

log(n(r)⌧)

�3 1
4n(r)⌧2

�(e)
e

. We now apply the in-

equality log x  1
✏1 exp(1)

x✏1 with ✏1 = ✏/2(r) and x = 3 ⌧⌘

�(e) and conclude
that

h(↵)r+1 > C1(r, ⌧, e)⌘
�1

⇣ 2(r)

✏ exp(1)

⌘�2(r)⇣
3
⌧⌘

�(e)

⌘�✏

.

This simplifies to
h(↵)r+1 > C2(✏, r, ⌧, e)⌘

�1�✏

with C2(✏, r, ⌧, e) =
� log log(n(r)⌧)

log(n(r)⌧)

�3⇣
2(r)

✏ exp(1)

⌘�2(r)
�(e)1+✏

/e

4n(r)c2(r)3✏⌧2+✏ . By Lemma

2.10, �(e)1+✏/e � C(✏), so that we can replace C2(✏, r, ⌧, e) in the inequality
by

C3(✏, r, ⌧) =
⇣ log log(n(r)⌧)

log(n(r)⌧)

⌘3⇣ 2(r)

✏ exp(1)

⌘�2(r) C(✏)

4n(r)c2(r)3✏⌧2+✏

,

and upon taking (r + 1)st roots we have

h(↵) > C3(✏, r, ⌧)
1

r+1 ⌘�
1

r+1�
✏

r+1 .

Using the fact that ⌘�✏/(r+1) � ⌘�✏ we get the bound

h(↵) > C3(✏, r, ⌧)
1

r+1 ⌘�
1

r+1�✏.

⇤
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