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Introduction

“I have never done anything useful. No discovery of mine has made, or is
likely to make, directly or indirectly, for good or ill, the least difference to
the amenity of the world.” -G. H. Hardy
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Introduction

For centuries, number theory was considered to be the most ‘pure’ form of
mathematics - there were no practical applications, as far as anyone could
tell.

However, in the latter half of the 20th century, number theory became
central to developments in digital security. Today, we will discuss just a
few of its applications, including:

primality testing/proving

public key cryptography

credit card check digits
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Primality Testing

“The problem of distinguishing prime numbers from composite numbers,
and of resolving the latter into their prime factors, is known to be one of
the most important and useful in arithmetic... Nevertheless we must
confess that all methods that have been proposed thus far are either
restricted to very special cases or are so laborious that even for numbers
that do not exceed the limits of tables constructed by estimable men, they
try the patience of even the practiced calculator.” -C. F. Gauss
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Primality Testing

It is easy to tell that 31 is prime and that 33 is not, but what about 60017?

Fundamental Problem: Given an integer n, determine whether it is
prime or composite.
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A Naive Test

What is the most obvious way that you can think of to determine whether
a positive integer n is prime?

Check all integers up to
√
n to see if they divide n.

Example To determine whether 131 is prime, we just need to check
all of the integers up to

√
131 : 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

None of these divide 131, so it must be prime.
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Some Minor Improvements

We know that even numbers greater than 2 are not prime, so an
improvement would be:

Check all odd integers up to
√
n to see if they divide n.

We know that integers > 3 that are congruent to 3 (mod 6) are not prime,
so an improvement would be:

Check all integers ≡ ±1 (mod 6) up to
√
n to see if they divide n.

We’ve already reduced the number of computations to 1
3

√
n steps!

Can we do any better?
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Two Theorems from Elementary Number Theory

Theorem (Wilson)

If p is prime then (p − 1)! ≡ −1 (mod p).

Theorem (F`T)

If p is prime and p - a then ap−1 ≡ 1 (mod p).

Can we use these theorems to detect whether an integer is prime?

If so, how efficient are these as primality criteria?
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F`T as a Primality Test

The repeated squaring algorithm is quite efficient:

Example: Let’s check for a = 2, p = 91.

290 = (2((2 · (25)2)2)2)2

25 ≡ 32 (91) 210 ≡ 23 (91) 211 ≡ −45 (91)

222 ≡ 23 (91) 244 ≡ −17 (91) 245 ≡ −34 (91)

290 ≡ 64 (91)

Do you notice anything strange about this last congruence?
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The Failure of F`T

Notice that the last congruence seems to violate F`T! Thus, the number
91 must not have been prime in the first place.

How efficient was this algorithm?

The whole process took 7 steps, which is proportional to log2(n)
when n = 91.

For contrast, notice that 1
3

√
n ≈ 3.12, the speed of our (improved)

naive algorithm.

For small values of n, the naive algorithm will be a bit quicker.
However, when n is big, the F`T algorithm will be much faster.
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Another F`T Example

Notice that 390 ≡ 1 (mod 91) seems to obey F`T, but we just concluded
on the previous slide that 91 is not prime. (In fact, 91 = 7× 13)

Conclusion: If F`T fails then n must be composite. But, if it seems to
work, then n could be either prime or composite. In this case, we cannot
conclude anything!
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Wilson’s Theorem as a Primality Test

We just saw that the converse of F`T is false in general.

However, the converse of Wilson’s Theorem is true:

Theorem

If (n − 1)! ≡ −1 (mod n) and n > 1 then n is prime.

Unfortunately, we have no efficient way to check the Wilson congruence -
the naive method of multiplying n − 1 numbers together would take n − 1
steps. This is much slower than all of the algorithms that we have
discussed so far.
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How Useful Are These Approaches?

Wilson’s Theorem is not useful at all as a primality test. It is too slow
to be helpful.

F`T is useful if we employ it in the following manner:

If we pick a randomly, the chance that ap−1 ≡ 1 (mod p) but p is not
prime is ≤ 25%.

If we repeat this process 50 times and always find that the F`T
congruence is satisfied, then the chance that p is not prime is less
than 7.9× 10−29%.

To put this into context, you are roughly 1025 times more likely to be
struck by lightning this year than you are to incorrectly conclude that
p is prime from this test!

So, we can be reasonably certain that p is prime.
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Exercise

Using F`T, determine whether or not 60017 is prime. (Note: For this
exercise, we will say that 60017 is prime if you are at least 98% certain
that it is).
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Primality Testing vs. Primality Proving

As we just saw, F`T is a good test if we want to convince ourselves that
an integer p is prime. However, it doesn’t actually prove anything - there
is always a (small) chance that p is composite.

If we wanted to prove that p is prime then we would need to use a
primality proving algorithm.

Primality proving algorithms are usually slower than primality tests. So, if
we want to be as efficient as possible, we would first use a primality test
(like F`T) to be relatively certain that p is not composite before using a
primality proving algorithm.

Lola Thompson (Ross Program) Number Theory and Security in the Digital Age July 21, 2010 15 / 37



Another Approach

Theorem (Lucas)

Suppose that n > 1 and a are integers with

an−1 ≡ 1 ( mod n)

and
a(n−1)/q 6≡ 1 ( mod n)

for all primes q | (n − 1). Then n is prime.

(This follows from the fact that Up is cyclic, so it must have an element of
order ϕ(p) = p − 1, but Un will never have an element of order n − 1 if n
is composite, since ϕ(n) < n − 1 in that case.)
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Lucas’ Theorem as a Primality Test

In order to use Lucas’ Theorem to prove that an integer n is prime, there
are two things that we must do:

Find an element a with order n − 1.

Find the prime factorization for n − 1.
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Efficiency Issues

We can randomly choose an integer a and have a decent chance that
a is a generator. If it turns out not to be a generator, then we just
pick a different a. This algorithm is very fast.

Factoring n − 1 is quite difficult (most of the time).
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A More Efficient Lucas Test

We don’t have to factor n − 1 completely. Factoring a “large enough”
portion is usually sufficient.

Theorem (Proth, Pocklington, Brillhart, Lehmer, & Selfridge)

Suppose that a,F , n > 1 are integers, F | n − 1,F >
√
n,

aF ≡ 1 ( mod n)

and
gcd (aF/q − 1, n) = 1

for all primes q | F . Then n is prime.

Exercise: Prove!
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Other Primality Tests

The theoretical goal is to create a “fast” algorithm that always works (i.e.
it tells us with 100% certainty that an integer is prime).

In 2002, Agrawal, Kayal and Saxena (AKS) published an algorithm for
primality proving that is both fast (relatively speaking) and always works.

It solves the theoretical problem but, unfortunately, it doesn’t finish off the
practical problem - AKS requires many more computations than the
probabilistic algorithms that we have discussed.
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Other Primality Tests

One of the fastest algorithms in use today is known as Elliptic Curve
Primality Proving (ECPP). It uses the same basic idea for the Lucas
Primality Proving, but instead of looking at orders of elements in Up,
ECPP examines orders of points (mod p) on an elliptic curve. However,
this is a probabilistic algorithm because randomness is used in choosing
the elliptic curve.

The most recent primality tests have relied on some extremely advanced
ideas from algebraic number theory and algebraic geometry. These are
computationally simple but quite difficult to understand.
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Why Do We Care if n is Prime?

Knowing whether an integer n is prime is useful in cryptography.

In general, it is much more difficult to factor an integer into a product of
large primes than it is to multiply large primes together. Many
cryptographic systems rely on this fact.

If you were able to quickly factor an integer into a product of two large
primes and verify that they were both prime, you would be able to break
into most banking systems.
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Public Key Cryptography

The first public key cryptosystem was created in 1976. Previously, secret
messages that needed to be decoded required a private key that was
available only to the sender and receiver. However, if the key fell into the
wrong hands, then the secret message could easily be decoded. As a
result, the sender and receiver would have to arrange for a secure exchange
of the private key (ex. meeting face-to-face or transporting the key via a
trusted courier).
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Public Key Cryptography

The idea behind a public key cryptosystem is that the key is published
publicly, but only the receiver knows how to make use of it. The first
public key cryptosystem was proposed by Rivest, Shamir and Adleman
(RSA) in 1977. It is still widely used today.
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RSA: The Setup
Here is how I would set up my own system for receiving encrypted
messages using RSA:

I choose two distinct prime numbers p and q.

I compute n = pq.

I compute ϕ(pq) = (p − 1)(q − 1).

I choose an integer e such that 1 < e < ϕ(pq), and e and ϕ(pq)
share no divisors other than 1 (i.e., e and ϕ(pq) are coprime).

I find the integer d which satisfies the congruence

de ≡ 1 ( mod ϕ(pq)).

Public: n, e Private: p, q, d
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RSA Encryption

Suppose that Jen wants to send me a message but she doesn’t want Dr.
Shapiro to read it. How can she use the ‘key’ (n, e) that I have made
public in order to encode her message in a way that, if it falls into the
wrong hands (i.e. Dr. Shapiro picks it up), it still can’t be read?
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RSA Encryption

I would transmit my public key (n, e) to Jen and keep my private key
secret.

Jen would turn her message into an integer M between 0 and n (for
example, she could assign A = 1, B = 2,..., Z = 26).

In order to encode her message M, Jen would compute

E = Me ( mod n)

and send E to me.
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RSA Decryption

In order to decode Jen’s message, I would simply raise Ed (mod n).

Why does this do the job?

Ed ≡ (Me)d ≡ Med ≡ M(multiple of ϕ(n))+1 ( mod n)

≡ 1×M ≡ M ( mod n).

Since both M and Ed lie between 0 and n, they must be equal! Now, I
can convert M back from a string of numbers into a string of letters.
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An RSA Example

Choose two prime numbers: p = 61 and q = 53.

Compute n = pq = 61 · 53 = 3233.

Compute the ϕ of product:
ϕ(61 · 53) = ϕ(61) · ϕ(53) = (61− 1) · (53− 1) = 3120.

Choose any number e > 1 that is coprime to 3120, ex. e = 17.

Compute d such that

de ≡ 1 ( mod ϕ(pq)).

For example, if we use Euclid’s algorithm, we see that d = 2753.

Thus, our public key is (n = 3233, e = 17).
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An RSA Example

Public key: (n = 3233, e = 17).

Suppose Jen wants to send the message “Hi.” Then, using the
assignment A = 1,B = 2, ...,Z = 26, we see that Hi = 89.

To encrypt the message, Jen would send

E ≡ Me ≡ 8917 ( mod 3233) ≡ 99 ( mod 3233).

To decrypt the message, I would compute

Ed ≡ 992753 ≡ 89 ( mod 3233).

Using the assignment A = 1,B = 2, ..,Z = 26, I can conclude that
Jen sent me the message “Hi.”
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Why is RSA Effective?

Without knowing d , it would be very difficult for Dr. Shapiro to decrypt
Jen’s message. Remember, the only information that he has is (n, e).
Since

d ≡ e−1 ( mod (p − 1)(q − 1))

then, in order to find d , he would have to be able to find both p and q by
factoring n. As we discussed earlier, factoring n into a product of two large
primes is quite hard.
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Credit Card Check Digits

The first credit card (the Diners Club Card) made its debut in 1950. By
1954, the first credit card security-related patent had been submitted by
Hans Peter Luhn. He created his algorithm in order to detect accidental
errors in credit card digits, but it also has proven handy in detecting credit
card fraud.
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Luhn’s Algorithm

Modular arithmetic gives us a quick way to determine that a credit card
number is fake:

Label the rightmost digit with an X . This digit will henceforth be
called the check digit.

Counting from the check digit and moving left, double the value of
every second digit.

Sum the digits of the products together with the undoubled digits
from the original number.

Reduce this sum (mod 10). If the answer is not ≡ −X (mod 10) then
your credit card number is fake!
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Example

Let’s check to see whether the following can be an actual credit card
number:

4147 2020 3679 7544

Label the rightmost digit with an X . 4147 2020 3679 754X

Counting from the check digit and moving left, double the value of
every second digit. 8187 4040 66(14)9 (14)58X

Sum the digits of the products together with the undoubled digits
from the original number. 76

Reduce this sum (mod 10). 6

Since 6 ≡ −4 ≡ −X (mod 10), then the credit card number might be
valid.
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Trouble with Transpositions
Luhn’s algorithm detects single digit substitutions (ex. accidentally writing
a “7” instead of an “1”) and most transpositions of digits.

There is one exception, however:

4147 2020 3679 7547

4147 2029 3670 7547

Here we’ve transposed a 0 with a 9, but both credit card numbers produce
the same result when we apply Luhn’s algorithm.

Why does this happen?

Notice that if 9 is in an even position (moving left from the check
digit) then it will be doubled, resulting in 18 with 1 + 8 = 9 as the
sum of its digits. The 0 will be unaffected since it is in an odd
position. On the other hand, if 0 were in an even position, its value
doubled would be 0 and when added to 9, the sum is still 9. Either
way, the sum is 9.
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Bad News/Good News

The Bad News: It’s very easy for thieves to use modular arithmetic to
engineer the check digit in a fraudulent credit card number so that it
satisfies our congruence condition.

The Good News: Luhn’s algorithm is still used by computers as an initial
check to distinguish potentially valid credit cards from random collections
of digits. However, before Amazon.com will send you the package that you
ordered, they will use more sophisticated techniques to verify your identity.
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Further Reading

D. Bressoud, Factorization and Primality Testing, Springer, New York,
1989.

R. Crandall and C. Pomerance, Prime numbers: a computational
perspective, 2nd ed., Springer, New York, 2005.

C. Pomerance, Primality Testing: Variations on a Theme of Lucas,
Proceedings of the 13th Meeting of the Fibonacci Association, Congressus
Numerantium 201 (2010), 301-312.
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