6	IN COL
l SI I	
ē	-
E	135
14	VING &
	1100

Divisor-sum
fibers
Lola
Thompson

Introduction The image of

s

The preimage of *s*

Divisor-sum fibers

Lola Thompson

Oberlin College

September 4, 2017

The s(n) function

Divisor-sum fibers

Lola Thompson

Introduction

The image of *s*

The preimage of s

Definition

Let s(n) denote the sum of proper divisors of n.

Example: s(p) = 1 for any prime p

Example: s(12) = 1 + 2 + 3 + 4 + 6 = 16

We can write $s(n) = \sigma(n) - n$, where $\sigma(n)$ is the sum-of-divisors function.

Perfect numbers

Lola Thompson

Introduction

The image of s

The preimage of \boldsymbol{s}

Pythagoras observed:

$$s(\mathbf{6}) = 1 + 2 + 3 = \mathbf{6}.$$

Definition

n is **perfect** if s(n) = n.

Amicable pairs

Divisor-sum fibers

Lola Thompson

Introduction

The image of s

The preimage of \boldsymbol{s}

Definition

If $s(\mathbf{n}) = \mathbf{m}$, $s(\mathbf{m}) = \mathbf{n}$, and $\mathbf{m} \neq \mathbf{n}$, then \mathbf{n} and \mathbf{m} form an **amicable pair**.

Example (Pythagoras):

s(220) = 284, s(284) = 220.

Iterates of s

Divisor-sum fibers Lola Thompson

Introduction

The image of s

The preimage of s

We can view s as a dynamical system, looking at its iterates: $6 \rightarrow 6$ $10 \rightarrow 8 \rightarrow 7 \rightarrow 1$ $12 \rightarrow 16 \rightarrow 15 \rightarrow 9 \rightarrow 4 \rightarrow 3 \rightarrow 1$ $28 \rightarrow 28$ $220 \rightarrow 284 \rightarrow 220$ $276 \rightarrow 396 \rightarrow \cdots$

Pythagoras studied 1-cycles (perfect numbers) and 2-cycles (amicable pairs).

Results on the iterates of \boldsymbol{s}

Divisor-sum
fibers

Lola Thompson

Introduction

The image of *s*

The preimage of \boldsymbol{s}

Theorem (Hornfeck & Wirsing, 1957)

The number of $n \leq x$ with s(n) = n is at most x^{ϵ} .

Theorem (Pomerance, 2014)

The number of $n \le x$ with n in a 2-cycle is at most $x/\exp((\log x)^{1/2})$ for x large.

Motivating questions

Divisor-sum fibers

Lola Thompson

Introduction

The image of

The preimage of *s*

"Studying the comparison of s(n) to n led to theorems of Schoenberg, Davenport, and Erdős-Wintner, and the birth of probabilistic number theory." -Carl Pomerance

In this talk, we will focus on two particular questions concerning the function s(n):

() Which numbers are of the form s(n)?

2 How large is the set $s^{-1}(n)$?

Divisor-sum
fibers
Lola
Thompson

Introduction

The image of ${\scriptstyle s}$

The preimage of *s*

The image of s

Erdős was the first to consider questions about the image of s.

Divisor-sum fibers

Lola Thompson

Introduction

The image of

The preimage of s

It is easy to see that almost all odd numbers are contained in the image of s:

Divisor-sum fibers

Lola Thompson

Introduction

The image of s

The preimage of s

It is easy to see that almost all odd numbers are contained in the image of s:

If p,q are primes with $p \neq q$, then s(pq) = p + q + 1.

Divisor-sum fibers

Lola Thompson

Introduction

The image of s

The preimage of *s*

It is easy to see that almost all odd numbers are contained in the image of s:

If p, q are primes with $p \neq q$, then s(pq) = p + q + 1.

Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

Divisor-sum fibers

Lola Thompson

Introduction

The image of s

The preimage of s

It is easy to see that almost all odd numbers are contained in the image of s:

If p,q are primes with $p \neq q$, then s(pq) = p + q + 1.

Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

This has actually been proven for all but an exceptional set with asymptotic density 0!

Divisor-sum fibers

Lola Thompson

Introduction

The image of s

The preimage of *s*

13/43

It is easy to see that almost all odd numbers are contained in the image of s:

If p,q are primes with $p \neq q$, then s(pq) = p + q + 1.

Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

This has actually been proven for all but an exceptional set with asymptotic density 0!

So almost all odd numbers ≥ 9 are values of s.

What about even numbers?

Divisor-sum fibers

Lola Thompson

Introduction

The image of s

The preimage of *s*

Theorem (Erdős, 1973)

A positive proportion of even integers are missing from the image of s.

Theorem (Luca & Pomerance, 2014)

A positive proportion of even integers are in the image of s.

The image of \boldsymbol{s}

Divisor-sum fibers

Lola Thompson

Introduction

The image of s

The preimage of *s*

The function s can map sets of asymptotic density 0 to sets with positive asymptotic density.

Example If $\mathcal{A} = \{pq : p, q \text{ prime}\}$ then \mathcal{A} has asymptotic density 0 but $s(\mathcal{A})$ has asymptotic density 1/2.

Example Erdős constructed sets \mathcal{A} of positive density such that $s^{-1}(\mathcal{A})$ not only has density 0 but is, in fact, empty.

Divisor-sum
fibers
Lola

Thompson

Introduction The image of

The preimage of s

The preimage of \boldsymbol{s}

What can be said about $s^{-1}(\mathcal{A})$ when \mathcal{A} has asymptotic density 0?

Divisor-sum fibers Lola

of s

The EGPS Conjecture

Conjecture (Erdős, Granville, Pomerance, Spiro, 1990)

Let \mathcal{A} be a set with asymptotic density 0. Then $s^{-1}(\mathcal{A})$ also has asymptotic density 0.

Consequences of EGPS

Divisor-sum fibers

Lola Thompson

Introduction The image of s

The preimage of \boldsymbol{s}

Some consequences of EGPS (if true):

- For each fixed positive integer k, but for a set of n with density 0, if s(n) < n then $s_k(n) < s_{k-1}(n) < \cdots < n$ where s_i is the *j*-fold iterate of s.
- 2 For each integer $k \ge 2$, there is a set \mathcal{A}_k of asymptotic density 1 such that

$$\frac{1}{x} \sum_{\substack{n \le x \\ n \in \mathcal{A}_k}} \log(s_k(n)/s_{k-1}(n)) \to \beta,$$

as $x \to \infty$, where β comes from a theorem of Bosma and Kane: $\frac{1}{x} \sum_{n \le x} \log(s(2n)/2n) \sim \beta$ as $x \to \infty$.

Special cases of EGPS

Divisor-sum fibers Lola Thompson

Introduction The image of

The preimage of \boldsymbol{s}

Some special cases of EGPS have been proven:

• (Pollack, 2014) If \mathcal{A} is the set of primes, then

$$\#s^{-1}(\mathcal{A}) = O\left(\frac{x}{\log x}\right).$$

Special cases of EGPS

Divisor-sum fibers Lola Thompson

Introduction The image of s

The preimage of *s*

Some special cases of EGPS have been proven:

• (Pollack, 2014) If \mathcal{A} is the set of primes, then

$$\#s^{-1}(\mathcal{A}) = O\left(\frac{x}{\log x}\right).$$

• (Troupe, 2015) If $\mathcal{A}_{\epsilon} = \{m : |\omega(m) - \log \log m| > \epsilon \log \log m\}$ then $s^{-1}(\mathcal{A}_{\epsilon})$ has density 0.

Special cases of EGPS

Divisor-sum fibers Lola Thompson

Introduction The image of s

The preimage of *s*

Some special cases of EGPS have been proven:

• (Pollack, 2014) If \mathcal{A} is the set of primes, then

$$\#s^{-1}(\mathcal{A}) = O\left(\frac{x}{\log x}\right).$$

- (Troupe, 2015) If $\mathcal{A}_{\epsilon} = \{m : |\omega(m) - \log \log m| > \epsilon \log \log m\}$ then $s^{-1}(\mathcal{A}_{\epsilon})$ has density 0.
- (Pollack, 2015) If A is the set of palindromes in any given base, then s⁻¹(A) has density 0.

Partial Progress on EGPS

Divisor-sum fibers

Lola Thompson

Introduction The image of s

The preimage of \boldsymbol{s}

22 / 43

Theorem (Pollack, Pomerance, T., 2017)

Let $\epsilon \to 0$ as $x \to \infty$. Suppose \mathcal{A} is a set of at most $x^{1/2+\epsilon}$ positive integers. Then, as $x \to \infty$,

$$\#\{n \le x : s(n) \in \mathcal{A}\} = o_{\epsilon}(x)$$

uniformly in \mathcal{A} .

Consequences

Divisor-sum fibers Lola Thompson	
Introduction	Immediate consequences of our result:
The image of	
The preimage of s	

Consequences

Divisor-sum
fibers
Lola
Thompson

Introduction The image of

The preimage of *s*

Immediate consequences of our result:

• If \mathcal{A} is the set of palindromes in any given base, then $s^{-1}(\mathcal{A})$ has density 0.

Consequences

Divisor-sum
fibers
Lola
Thompson

Introduction The image of

The preimage of \boldsymbol{s}

Immediate consequences of our result:

- If \mathcal{A} is the set of palindromes in any given base, then $s^{-1}(\mathcal{A})$ has density 0.
- If \mathcal{A} is the set of squares, then $s^{-1}(\mathcal{A})$ has density 0.

Disproving a stronger EGPS conjecture

Divisor-sum fibers

Lola Thompson

Introduction The image of

The preimage of *s*

EGPS point out that their conjecture would be a consequence of the following assertion about the sizes of elements in a fiber.

Hypothesis (Erdős, Granville, Pomerance, Spiro, 1990)

For each positive number θ there exists a constant C_{θ} such that for all positive integers m there exist at most C_{θ} numbers $n \leq \theta m$ with s(n) = m.

Divisor-sum fibers

Lola Thompson

Introduction The image of s

The preimage of *s*

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form 2pq.

Divisor-sum fibers

Lola Thompson

Introduction The image of

The preimage of *s*

28 / 43

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form 2pq.

Observe that s(2pq) = (p+3)(q+3) - 6.

Divisor-sum fibers

Lola Thompson

Introduction The image of

The preimage of \boldsymbol{s}

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form 2pq.

Observe that s(2pq) = (p+3)(q+3) - 6.

By a construction of Erdős/Prachar, there are numbers with arbitrarily many representations of this form.

Divisor-sum fibers

Lola Thompson

Introduction The image of

(

The preimage of \boldsymbol{s}

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form 2pq.

Deserve that
$$s(2pq) = (p+3)(q+3) - 6$$
.

By a construction of Erdős/Prachar, there are numbers with arbitrarily many representations of this form.

Note: $m = s(2pq) \ge pq$, so that each preimage $2pq \le 2m$.

Divisor-sum fibers

Lola Thompson

Introduction The image of

(

The preimage of \boldsymbol{s}

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form 2pq.

Deserve that
$$s(2pq) = (p+3)(q+3) - 6$$
.

By a construction of Erdős/Prachar, there are numbers with arbitrarily many representations of this form.

Note: $m = s(2pq) \ge pq$, so that each preimage $2pq \le 2m$.

Thus, the Strong EGPS conjecture fails for $\theta = 2$.

Disproving a stronger EGPS conjecture

fibers
Lola Thompson
Introduction

The image of

The preimage of \boldsymbol{s}

Using an elaboration on these methods, we show:

Theorem (Pollack, Pomerance, T., 2017)

There is a constant c > 0 for which the following holds. Let α and ϵ be positive real numbers. There are infinitely many m with at least $\exp(c \log m / \log \log m)$ s-preimages that lie in the interval $(\alpha(1 - \epsilon)m, \alpha(1 + \epsilon)m)$.

Key Lemma

fibers	
Lola Thompson	

Introduction The image of

The preimage of *s*

We use the following generalization of Erdős-Prachar:

Lemma (Pollack, Pomerance, T., 2017)

There is a positive absolute constant c such that, for all $a, b \in \mathbb{Z}$ with $a \neq 0$ and b > 0, there are infinitely many integers k with more than $\exp(c \log k / \log \log k)$ representations as (bp + a)(bq + a) with p, q primes.

Divisor-sum fibers

Lola Thompson

Introduction The image of

s

The preimage of s Let $0<\epsilon<1.$ It is well-known that the values of s(n)/n are dense in $(0,\infty).$

Divisor-sum fibers

Lola Thompson

Introduction The image of s

The preimage of *s*

Let $0<\epsilon<1.$ It is well-known that the values of s(n)/n are dense in $(0,\infty).$

Thus, we can fix $n_0 > 1$ with

$$s(n_0)/n_0 \in \left(\alpha^{-1}\left(1-\frac{1}{2}\epsilon\right), \alpha^{-1}\left(1+\frac{1}{2}\epsilon\right)\right).$$

Divisor-sum fibers

Lola Thompson

Introduction The image of

The preimage of *s*

Let $0<\epsilon<1.$ It is well-known that the values of s(n)/n are dense in $(0,\infty).$

Thus, we can fix $n_0 > 1$ with

$$s(n_0)/n_0 \in \left(\alpha^{-1}\left(1-\frac{1}{2}\epsilon\right), \alpha^{-1}\left(1+\frac{1}{2}\epsilon\right)\right).$$

Write $n = n_0 pq$, where p, q are distinct primes not dividing n_0 .

Divisor-sum fibers

Lola Thompson

Introduction The image of

The preimage of \boldsymbol{s}

Let $0<\epsilon<1.$ It is well-known that the values of s(n)/n are dense in $(0,\infty).$

Thus, we can fix $n_0 > 1$ with

$$s(n_0)/n_0 \in \left(\alpha^{-1}\left(1-\frac{1}{2}\epsilon\right), \alpha^{-1}\left(1+\frac{1}{2}\epsilon\right)\right).$$

Write $n = n_0 pq$, where p, q are distinct primes not dividing n_0 . Then

$$\begin{split} s(n_0 pq) &= \sigma(n_0)(p+1)(q+1) - n_0 pq \\ &= s(n_0)pq + \sigma(n_0)(p+q+1), \end{split}$$

so that

$$s(n_0)s(n_0pq) = (s(n_0)p + \sigma(n_0))(s(n_0)q + \sigma(n_0)) + s(n_0)\sigma(n_0) - \sigma(n_0)^2.$$

Divisor-sum fibers Lola

Lola Thompson

Introduction The image of

The preimage of *s*

By Key Lemma, there are infinitely many $k\in\mathbb{Z}$ with more than $\exp(c\log k/\log\log k)$ representations of the form

$$k = (s(n_0)p + \sigma(n_0))(s(n_0)q + \sigma(n_0))$$

with p, q distinct.

Divisor-sum fibers Lola Thompson

Introduction The image of

s s

The preimage of *s*

By Key Lemma, there are infinitely many $k\in\mathbb{Z}$ with more than $\exp(c\log k/\log\log k)$ representations of the form

$$k = (s(n_0)p + \sigma(n_0))(s(n_0)q + \sigma(n_0))$$

with p, q distinct.

Define

$$m = \frac{k + s(n_0)\sigma(n_0) - \sigma(n_0)^2}{s(n_0)}.$$

Divisor-sum fibers Lola Thompson

Introduction The image of

The preimage of \boldsymbol{s}

By Key Lemma, there are infinitely many $k\in\mathbb{Z}$ with more than $\exp(c\log k/\log\log k)$ representations of the form

$$k = (s(n_0)p + \sigma(n_0))(s(n_0)q + \sigma(n_0))$$

with p, q distinct.

Define

$$m = \frac{k + s(n_0)\sigma(n_0) - \sigma(n_0)^2}{s(n_0)}.$$

Then m < k and m has at least $\exp(c \log m / \log \log m)$ representations in the form $s(n_0 pq)$.

Divisor-sum fibers Lola Thompson

Introduction The image of s

The preimage of \boldsymbol{s}

By Key Lemma, there are infinitely many $k\in\mathbb{Z}$ with more than $\exp(c\log k/\log\log k)$ representations of the form

$$k = (s(n_0)p + \sigma(n_0))(s(n_0)q + \sigma(n_0))$$

with p, q distinct.

Define

$$m = \frac{k + s(n_0)\sigma(n_0) - \sigma(n_0)^2}{s(n_0)}.$$

Then m < k and m has at least $\exp(c \log m / \log \log m)$ representations in the form $s(n_0 pq)$.

Simple algebra shows $(1 - \epsilon)\alpha m < n_0 pq < (1 + \epsilon)\alpha m$).

Divisor-sum fibers Lola Thompson

Introduction The image of s

The preimage of *s*

By Key Lemma, there are infinitely many $k\in\mathbb{Z}$ with more than $\exp(c\log k/\log\log k)$ representations of the form

$$k = (s(n_0)p + \sigma(n_0))(s(n_0)q + \sigma(n_0))$$

with p, q distinct.

Define

$$m = \frac{k + s(n_0)\sigma(n_0) - \sigma(n_0)^2}{s(n_0)}.$$

Then m < k and m has at least $\exp(c \log m / \log \log m)$ representations in the form $s(n_0 pq)$.

Simple algebra shows $(1 - \epsilon)\alpha m < n_0 pq < (1 + \epsilon)\alpha m$).

Thus, m has at least $\exp(c \log m / \log \log m)$ preimages $n = n_0 pq$ in $((1 - \epsilon)\alpha m, (1 + \epsilon)\alpha m)$.

Divisor-sum fibers

Lola Thompson

Introduction

The image of s

The preimage of *s*

Thank you!