Divisor-sum fibers

Lola Thompson

Oberlin College

September 4, 2017

The $s(n)$ function

Divisor-sum fibers

Lola

Thompson

Introduction
The image of
s

The preimage of s

Definition

Let $s(n)$ denote the sum of proper divisors of n.

Example: $s(p)=1$ for any prime p

Example: $s(12)=1+2+3+4+6=16$

We can write $s(n)=\sigma(n)-n$, where $\sigma(n)$ is the sum-of-divisors function.

Perfect numbers

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of

The preimage of s

Pythagoras observed:

$$
s(\mathbf{6})=1+2+3=\mathbf{6}
$$

Definition

n is perfect if $s(n)=n$.

Amicable pairs

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of

The preimage of s

Definition

If $s(\mathbf{n})=\mathbf{m}, s(\mathrm{~m})=\mathbf{n}$, and $\mathrm{m} \neq \mathbf{n}$, then n and m form an amicable pair.

Example (Pythagoras):

$$
s(220)=284, \quad s(284)=220
$$

Iterates of s

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of s

The preimage of s

We can view s as a dynamical system, looking at its iterates:
$6 \rightarrow 6$
$10 \rightarrow 8 \rightarrow 7 \rightarrow 1$
$12 \rightarrow 16 \rightarrow 15 \rightarrow 9 \rightarrow 4 \rightarrow 3 \rightarrow 1$
$28 \rightarrow 28$
$220 \rightarrow 284 \rightarrow 220$
$276 \rightarrow 396 \rightarrow \cdots$

Pythagoras studied 1-cycles (perfect numbers) and 2-cycles (amicable pairs).

Results on the iterates of s

Divisor-sum
fibers
Lola
Thompson

Introduction

The image of

The preimage of s

Theorem (Hornfeck \& Wirsing, 1957)

The number of $n \leq x$ with $s(n)=n$ is at most x^{ϵ}.

Theorem (Pomerance, 2014)

The number of $n \leq x$ with n in a 2-cycle is at most $x / \exp \left((\log x)^{1 / 2}\right)$ for x large.

Motivating questions

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of

The preimage of s
"Studying the comparison of $s(n)$ to n led to theorems of Schoenberg, Davenport, and Erdős-Wintner, and the birth of probabilistic number theory." -Carl Pomerance

In this talk, we will focus on two particular questions concerning the function $s(n)$:
(1) Which numbers are of the form $s(n)$?
(2) How large is the set $s^{-1}(n)$?

The image of s

Erdős was the first to consider questions about the image of s.

Odd integers in the image of s

Divisor-sum fibers

Lola
Thompson

Introduction
The image of
S
The preimage of s

It is easy to see that almost all odd numbers are contained in the image of s :

Odd integers in the image of s

Divisor-sum fibers Lola
Thompson

Introduction
The image of
s
The preimage of s

It is easy to see that almost all odd numbers are contained in the image of s :

If p, q are primes with $p \neq q$, then $s(p q)=p+q+1$.

Odd integers in the image of s

Divisor-sum fibers Lola
Thompson

Introduction
The image of
S
The preimage of s

It is easy to see that almost all odd numbers are contained in the image of s :

If p, q are primes with $p \neq q$, then $s(p q)=p+q+1$.

Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

Odd integers in the image of s

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of
S
The preimage of s

It is easy to see that almost all odd numbers are contained in the image of s :

If p, q are primes with $p \neq q$, then $s(p q)=p+q+1$.

Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

This has actually been proven for all but an exceptional set with asymptotic density 0 !

Odd integers in the image of s

Divisor-sum

fibers
Lola
Thompson

Introduction
The image of
s
The preimage of s

It is easy to see that almost all odd numbers are contained in the image of s :

If p, q are primes with $p \neq q$, then $s(p q)=p+q+1$.
Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

This has actually been proven for all but an exceptional set with asymptotic density 0 !

So almost all odd numbers ≥ 9 are values of s.

What about even numbers?

Divisor-sum fibers

Lola
Thompson

Introduction

The image of
s

The preimage of s

Theorem (Erdős, 1973)

A positive proportion of even integers are missing from the image of s.

Theorem (Luca \& Pomerance, 2014)

A positive proportion of even integers are in the image of s.

The image of s

Divisor-sum

 fibers LolaThompson

Introduction
The image of
s
The preimage of s

The function s can map sets of asymptotic density 0 to sets with positive asymptotic density.

Example If $\mathcal{A}=\{p q: p, q$ prime $\}$ then \mathcal{A} has asymptotic density 0 but $s(\mathcal{A})$ has asymptotic density $1 / 2$.

Example Erdős constructed sets \mathcal{A} of positive density such that $s^{-1}(\mathcal{A})$ not only has density 0 but is, in fact, empty.

The preimage of s

What can be said about $s^{-1}(\mathcal{A})$ when \mathcal{A} has asymptotic density 0 ?

The EGPS Conjecture

Divisor-sum fibers

Lola
Thompson

Introduction
The image of s

The preimage of s

Conjecture (Erdős, Granville, Pomerance, Spiro, 1990)

Let \mathcal{A} be a set with asymptotic density 0 . Then $s^{-1}(\mathcal{A})$ also has asymptotic density 0 .

Consequences of EGPS

Divisor-sum fibers Lola
Thompson

Introduction The image of s

The preimage of s

Some consequences of EGPS (if true):
(1) For each fixed positive integer k, but for a set of n with density 0 , if $s(n)<n$ then $s_{k}(n)<s_{k-1}(n)<\cdots<n$ where s_{j} is the j-fold iterate of s.
(2) For each integer $k \geq 2$, there is a set \mathcal{A}_{k} of asymptotic density 1 such that

$$
\frac{1}{x} \sum_{\substack{n \leq x \\ n \in \mathcal{A}_{k}}} \log \left(s_{k}(n) / s_{k-1}(n)\right) \rightarrow \beta
$$

as $x \rightarrow \infty$, where β comes from a theorem of Bosma and Kane: $\frac{1}{x} \sum_{n \leq x} \log (s(2 n) / 2 n) \sim \beta$ as $x \rightarrow \infty$.

Special cases of EGPS

Divisor-sum fibers Lola
Thompson

Introduction
The image of s

The preimage of s

Some special cases of EGPS have been proven:

- (Pollack, 2014) If \mathcal{A} is the set of primes, then

$$
\# s^{-1}(\mathcal{A})=O\left(\frac{x}{\log x}\right)
$$

Special cases of EGPS

Divisor-sum fibers Lola
Thompson

Introduction
The image of s

The preimage of s

Some special cases of EGPS have been proven:

- (Pollack, 2014) If \mathcal{A} is the set of primes, then

$$
\# s^{-1}(\mathcal{A})=O\left(\frac{x}{\log x}\right)
$$

- (Troupe, 2015) If $\mathcal{A}_{\epsilon}=\{m:|\omega(m)-\log \log m|>\epsilon \log \log m\}$ then $s^{-1}\left(\mathcal{A}_{\epsilon}\right)$ has density 0 .

Special cases of EGPS

Some special cases of EGPS have been proven:

- (Pollack, 2014) If \mathcal{A} is the set of primes, then

$$
\# s^{-1}(\mathcal{A})=O\left(\frac{x}{\log x}\right)
$$

- (Troupe, 2015) If $\mathcal{A}_{\epsilon}=\{m:|\omega(m)-\log \log m|>\epsilon \log \log m\}$ then $s^{-1}\left(\mathcal{A}_{\epsilon}\right)$ has density 0 .
- (Pollack, 2015) If \mathcal{A} is the set of palindromes in any given base, then $s^{-1}(\mathcal{A})$ has density 0 .

Partial Progress on EGPS

Divisor-sum fibers

Lola
Thompson

Introduction
The image of s

The preimage of s

Theorem (Pollack, Pomerance, T., 2017)

Let $\epsilon \rightarrow 0$ as $x \rightarrow \infty$. Suppose \mathcal{A} is a set of at most $x^{1 / 2+\epsilon}$ positive integers. Then, as $x \rightarrow \infty$,

$$
\#\{n \leq x: s(n) \in \mathcal{A}\}=o_{\epsilon}(x)
$$

uniformly in \mathcal{A}.

Consequences

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of
s

The preimage of s

Immediate consequences of our result:

Consequences

Divisor-sum fibers Lola
Thompson

Introduction
The image of
s

The preimage of s

Immediate consequences of our result:

- If \mathcal{A} is the set of palindromes in any given base, then $s^{-1}(\mathcal{A})$ has density 0.

Consequences

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of s

The preimage of s

Immediate consequences of our result:

- If \mathcal{A} is the set of palindromes in any given base, then $s^{-1}(\mathcal{A})$ has density 0.
- If \mathcal{A} is the set of squares, then $s^{-1}(\mathcal{A})$ has density 0 .

Disproving a stronger EGPS conjecture

Divisor-sum

 fibersLola
Thompson

Introduction
The image of
s

The preimage of s

EGPS point out that their conjecture would be a consequence of the following assertion about the sizes of elements in a fiber.

Hypothesis (Erdős, Granville, Pomerance, Spiro, 1990)

For each positive number θ there exists a constant C_{θ} such that for all positive integers m there exist at most C_{θ} numbers $n \leq \theta m$ with $s(n)=m$.

Proof Sketch

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of s

The preimage of s

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form $2 p q$.

Proof Sketch

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of
s

The preimage of s

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form $2 p q$.

Observe that $s(2 p q)=(p+3)(q+3)-6$.

Proof Sketch

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of
s

The preimage of s

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form $2 p q$.

Observe that $s(2 p q)=(p+3)(q+3)-6$.
By a construction of Erdős/Prachar, there are numbers with arbitrarily many representations of this form.

Proof Sketch

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of s

The preimage of s

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form $2 p q$.

Observe that $s(2 p q)=(p+3)(q+3)-6$.
By a construction of Erdős/Prachar, there are numbers with arbitrarily many representations of this form.

Note: $m=s(2 p q) \geq p q$, so that each preimage $2 p q \leq 2 m$.

Proof Sketch

We disprove the stronger EGPS conjecture, showing that there are integers m with arbitrarily many preimages of the form $2 p q$.

Observe that $s(2 p q)=(p+3)(q+3)-6$.
By a construction of Erdős/Prachar, there are numbers with arbitrarily many representations of this form.

Note: $m=s(2 p q) \geq p q$, so that each preimage $2 p q \leq 2 m$.

Thus, the Strong EGPS conjecture fails for $\theta=2$.

Disproving a stronger EGPS conjecture

Divisor-sum fibers

Lola

Thompson

Introduction The image of
s

The preimage of s

Using an elaboration on these methods, we show:

Theorem (Pollack, Pomerance, T., 2017)

There is a constant $c>0$ for which the following holds. Let α and ϵ be positive real numbers. There are infinitely many m with at least $\exp (c \log m / \log \log m) s$-preimages that lie in the interval $(\alpha(1-\epsilon) m, \alpha(1+\epsilon) m)$.

Key Lemma

Divisor-sum fibers

Lola
Thompson

Introduction
The image of
s

The preimage of s

We use the following generalization of Erdős-Prachar:
Lemma (Pollack, Pomerance, T., 2017)
There is a positive absolute constant c such that, for all $a, b \in \mathbb{Z}$ with $a \neq 0$ and $b>0$, there are infinitely many integers k with more than $\exp (c \log k / \log \log k)$ representations as $(b p+a)(b q+a)$ with p, q primes.

Proof Sketch

Divisor-sum fibers Lola Thompson

Introduction
The image of s

The preimage of s

Let $0<\epsilon<1$. It is well-known that the values of $s(n) / n$ are dense in $(0, \infty)$.

Proof Sketch

Divisor-sum fibers Lola Thompson

Introduction
The image of s

The preimage of s

Let $0<\epsilon<1$. It is well-known that the values of $s(n) / n$ are dense in $(0, \infty)$.

Thus, we can fix $n_{0}>1$ with

$$
s\left(n_{0}\right) / n_{0} \in\left(\alpha^{-1}\left(1-\frac{1}{2} \epsilon\right), \alpha^{-1}\left(1+\frac{1}{2} \epsilon\right)\right) .
$$

Proof Sketch

Divisor-sum fibers Lola
Thompson

Introduction
The image of s

The preimage of s

Let $0<\epsilon<1$. It is well-known that the values of $s(n) / n$ are dense in $(0, \infty)$.

Thus, we can fix $n_{0}>1$ with

$$
s\left(n_{0}\right) / n_{0} \in\left(\alpha^{-1}\left(1-\frac{1}{2} \epsilon\right), \alpha^{-1}\left(1+\frac{1}{2} \epsilon\right)\right) .
$$

Write $n=n_{0} p q$, where p, q are distinct primes not dividing n_{0}.

Proof Sketch

Divisor-sum fibers Lola Thompson

Introduction The image of s

The preimage of s

Let $0<\epsilon<1$. It is well-known that the values of $s(n) / n$ are dense in $(0, \infty)$.

Thus, we can fix $n_{0}>1$ with

$$
s\left(n_{0}\right) / n_{0} \in\left(\alpha^{-1}\left(1-\frac{1}{2} \epsilon\right), \alpha^{-1}\left(1+\frac{1}{2} \epsilon\right)\right) .
$$

Write $n=n_{0} p q$, where p, q are distinct primes not dividing n_{0}. Then

$$
\begin{aligned}
s\left(n_{0} p q\right) & =\sigma\left(n_{0}\right)(p+1)(q+1)-n_{0} p q \\
& =s\left(n_{0}\right) p q+\sigma\left(n_{0}\right)(p+q+1)
\end{aligned}
$$

so that

$$
\begin{aligned}
s\left(n_{0}\right) s\left(n_{0} p q\right) & =\left(s\left(n_{0}\right) p+\sigma\left(n_{0}\right)\right)\left(s\left(n_{0}\right) q+\sigma\left(n_{0}\right)\right) \\
& +s\left(n_{0}\right) \sigma\left(n_{0}\right)-\sigma\left(n_{0}\right)^{2} .
\end{aligned}
$$

Proof Sketch

Divisor-sum fibers Lola
Thompson

Introduction
The image of s

The preimage of s

By Key Lemma, there are infinitely many $k \in \mathbb{Z}$ with more than $\exp (c \log k / \log \log k)$ representations of the form

$$
k=\left(s\left(n_{0}\right) p+\sigma\left(n_{0}\right)\right)\left(s\left(n_{0}\right) q+\sigma\left(n_{0}\right)\right)
$$

with p, q distinct.

Proof Sketch

Divisor-sum fibers Lola
Thompson

Introduction
The image of s

The preimage of s

By Key Lemma, there are infinitely many $k \in \mathbb{Z}$ with more than $\exp (c \log k / \log \log k)$ representations of the form

$$
k=\left(s\left(n_{0}\right) p+\sigma\left(n_{0}\right)\right)\left(s\left(n_{0}\right) q+\sigma\left(n_{0}\right)\right)
$$

with p, q distinct.
Define

$$
m=\frac{k+s\left(n_{0}\right) \sigma\left(n_{0}\right)-\sigma\left(n_{0}\right)^{2}}{s\left(n_{0}\right)}
$$

Proof Sketch

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of s

The preimage of s

By Key Lemma, there are infinitely many $k \in \mathbb{Z}$ with more than $\exp (c \log k / \log \log k)$ representations of the form

$$
k=\left(s\left(n_{0}\right) p+\sigma\left(n_{0}\right)\right)\left(s\left(n_{0}\right) q+\sigma\left(n_{0}\right)\right)
$$

with p, q distinct.
Define

$$
m=\frac{k+s\left(n_{0}\right) \sigma\left(n_{0}\right)-\sigma\left(n_{0}\right)^{2}}{s\left(n_{0}\right)} .
$$

Then $m<k$ and m has at least $\exp (c \log m / \log \log m)$ representations in the form $s\left(n_{0} p q\right)$.

Proof Sketch

Divisor-sum
fibers
Lola
Thompson

Introduction
The image of s

The preimage of s

By Key Lemma, there are infinitely many $k \in \mathbb{Z}$ with more than $\exp (c \log k / \log \log k)$ representations of the form

$$
k=\left(s\left(n_{0}\right) p+\sigma\left(n_{0}\right)\right)\left(s\left(n_{0}\right) q+\sigma\left(n_{0}\right)\right)
$$

with p, q distinct.
Define

$$
m=\frac{k+s\left(n_{0}\right) \sigma\left(n_{0}\right)-\sigma\left(n_{0}\right)^{2}}{s\left(n_{0}\right)}
$$

Then $m<k$ and m has at least $\exp (c \log m / \log \log m)$ representations in the form $s\left(n_{0} p q\right)$.

Simple algebra shows $\left.(1-\epsilon) \alpha m<n_{0} p q<(1+\epsilon) \alpha m\right)$.

Proof Sketch

Divisor-sum fibers

Lola
Thompson

Introduction
The image of s

The preimage of s

By Key Lemma, there are infinitely many $k \in \mathbb{Z}$ with more than $\exp (c \log k / \log \log k)$ representations of the form

$$
k=\left(s\left(n_{0}\right) p+\sigma\left(n_{0}\right)\right)\left(s\left(n_{0}\right) q+\sigma\left(n_{0}\right)\right)
$$

with p, q distinct.
Define

$$
m=\frac{k+s\left(n_{0}\right) \sigma\left(n_{0}\right)-\sigma\left(n_{0}\right)^{2}}{s\left(n_{0}\right)}
$$

Then $m<k$ and m has at least $\exp (c \log m / \log \log m)$ representations in the form $s\left(n_{0} p q\right)$.

Simple algebra shows $\left.(1-\epsilon) \alpha m<n_{0} p q<(1+\epsilon) \alpha m\right)$.
Thus, m has at least $\exp (c \log m / \log \log m)$ preimages $n=n_{0} p q$ in $((1-\epsilon) \alpha m,(1+\epsilon) \alpha m)$.

Divisor-sum
fibers

Lola

Thompson

Introduction
The image of
s

The preimage of s

Thank you!

