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Overview

Our Goal: Prove effective versions of rigidity results for
arithmetic hyperbolic 2 and 3-manifolds.

Main Idea: We exploit the correspondence between maximal
subfields of quaternion algebras and lengths of geodesics on
arithmetic hyperbolic 2- and 3-manifolds.

Talk Overview:

Brief introduction to quaternion algebras

Our results on counting quaternion algebras

Geometric background

Our results on surfaces
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Quaternion algebras

In the 1830s and 1840s, William Rowan Hamilton sought a
number system which would play a role in three-dimensional
geometry analogous to that of the complex numbers in
two-dimensional geometry.

“Every morning in the early part of the above-cited month
[October 1843], on my coming down to breakfast, your (then)
little brother William Edwin, and yourself, used to ask me:
‘Well, Papa, can you multiply triplets?’ Whereto I was always
obliged to reply, with a sad shake of the head: ‘No, I can only
add and subtract them.”’

– Hamilton (in a letter to his son)
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Quaternion algebras

Theorem (Hamilton, 1843)

The R-algebra H with basis {1, i, j, ij} and
defining relations

i2 = −1 j2 = −1 ij = −ji

is a four-dimensional division algebra.

Hamilton was so excited by this discovery that he carved these
relations into the stone of the Brougham Bridge!
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Quaternion algebras

Write (−1,−1,R) instead of H.

This notation suggests a number of ways to generalize H.

For example, let (1, 1,R) be the R-algebra with basis
{1, i, j, ij} and defining relations

i2 = 1 j2 = 1 ij = −ji.

Then (1, 1,R) ∼= M2(R) via i 7→
[

0 1
1 0

]
and

j 7→
[

1 0
0 −1

]
.
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Quaternion algebras

More generally, we can define (a, b,R) to be the R-algebra with
basis {1, i, j, ij} and defining relations

i2 = a j2 = b ij = −ji a, b ∈ R∗.

(We can also replace R with other fields of characteristic 0.)

It’s not too hard to show that

(a, b,R) ∼= H if a, b < 0 and

(a, b,R) ∼= M2(R) otherwise.

Thus (a, b,R) is either a division algebra or isomorphic to
M2(R).
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Counting Central Division Algebras

Let k be a number field and n a positive integer. We are
interested in counting the number of central division algebras
of dimension n2 over k which have (norm of) discriminant less
than x.

For example, if k = Q and n = 2, we are counting the number
of rational quaternion algebras with discriminant less than x.

Our main tool in counting central division algebras will be the
following Tauberian theorem of Delange.
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Delange’s Tauberian Theorem

Theorem (Delange’s Tauberian Theorem)

Let G(s) =
∑ aN

Ns be a Dirichlet series satisfying:

1 aN ≥ 0 for all N and G(s) converges for Re(s) > ρ.

2 G(s) can be continued to an analytic function in the
closed half-plane Re(s) ≥ ρ except possibly for a
singularity at s = ρ.

3 There is an open neighborhood of ρ and functions
A(s), B(s) analytic at s = ρ with
G(s) = A(s)/(s− ρ)β +B(s) at every point in this
neighborhood having Re(s) > ρ.

Then as x→∞ we have∑
N≤x

aN =

(
A(ρ)

ρΓ(β)
+ o(1)

)
xρ log(x)β−1.
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Growth Rate of Division Algebras

Theorem (Linowitz, McReynolds, Pollack, T.)

If N(x) denotes the number of division algebras of dimension
n2 over k with |disc| < x and ` is the smallest prime divisor of
n, then there is a constant δn > 0 so that

N(x) = (δn + o(1))x
1

n2(1−1/`) (log x)`−2,

as x→∞.
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Proof Sketch

Main idea:

Create a Dirichlet series whose coefficients count the
central division algebras with fixed discriminant.

Apply Delange’s Theorem in order to estimate the partial
sums of these coefficients.
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Growth Rate of Algebras with a Specified Subfield

Theorem (Linowitz, McReynolds, Pollack, T.)

Fix a number field k and a quaternion algebra B defined over
k. The number of quadratic extensions L/k which embed into
B and satisfy |∆L/k| ≤ x is asymptotic to ck,Bx, as x→∞,
where ck,B > 0. Moreover, if κk is the residue at s = 1 of
ζk(s), r2 is the number of pairs of complex embeddings of k,
and rB is the number of places of k (both finite and infinite)
that ramify in B, then

ck,B ≥
1

2rB+r2

κk
ζk(2)

.
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Proof Sketch

Recall: If B/k is a quaternion algebra and L/k is a
quadratic extension, then L embeds into B iff no prime of
k that divides the discriminant of B splits in L/k.

A result of Matchett Wood allows us to model the
splitting of finitely many primes as mutually independent
events over the class of random quadratic extensions of k.

Use this along with the proof of the previous theorem.
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Counting Quaternion Algebras

A similar problem is to count the number of quaternion
algebras over k which admit embeddings of specified quadratic
extensions L1, . . . , Lr of k.

Theorem (Albert-Brauer-Hasse-Noether, 1931)

There is an embedding of L into A if and only if no prime p of
K for which A⊗k kp is a division algebra splits in L/k.
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Counting Quaternion Algebras

The idea used to prove the previous theorems can be adapted
to show:

Theorem (Linowitz, McReynolds, Pollack, T.)

Fix a number field k, and fix quadratic extensions
L1, L2, . . . , Lr of k. Let L be the compositum of the Li, and
suppose that [L : k] = 2r. The number of quaternion algebras
over k with discriminant having norm less than x and which
admit embeddings of all of the Li is

∼ δ · x1/2/(log x)1−
1
2r ,

as x→∞. Here δ is a positive constant depending only on the
Li and k.
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Geometric Background

Let M be a compact Riemannian manifold.

The Laplace eigenvalue spectrum of M , denoted E(M), is
the multiset of eigenvalues of the Laplacian of M .

The geodesic length spectrum, denoted LS(M), is the
multiset of lengths of closed geodesics on M with fundamental
group π1(M).

Inverse spectral geometry asks for the extent to which the
spectra of M determine its geometry and topology.22 / 38
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Geometric terminology

Definition

Two manifolds are commensurable if and only if they have a
common finite degree covering space.

Definition

Two manifolds are isometric if there is an isometry between
them.

Definition

M and N are isospectral if E(M) = E(N), and length
isospectral if LS(M) = LS(N).
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Inverse Problems

Some natural inverse problems:

If LS(M) = LS(N), is M isometric to N?

If LS(M) = LS(N), are M and N commensurable?

If LS(M) = LS(N), what can be said about N?

We can ask the same questions for E(M).
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Can you hear the shape of a drum?

Leon Green (1960) asked if the spectrum of M determines its
isometry class.

The spectrum of M is essentially the collection of frequencies
produced by a drumhead shaped like M .

Mark Kac (1966) popularized this
question for planar domains:

Can you hear the shape of a drum?
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Can you hear the shape of a drum?

Kac’s question was finally answered in 1992.

Theorem (Gordon, Webb, Wolpert, 1992)

One cannot hear the shape of a drum.
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Hyperbolic surfaces

The hyperbolic plane H2 is a simply connected surface with
constant curvature −1 and can be be modeled by the disc
(Circle Limit IV, by M.C. Escher):

The symmetries of this diagram, mapping one angel to any
other angel, form a group of isometries acting on H2.
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Results for hyperbolic surfaces

Theorem (Vigneras, 1980)

There exist isospectral
non-isometric hyperbolic 2- and
3-manifolds.

Vigneras’ examples arise from quaternion algebras!
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Isospectral but non-isometric

A pair of isospectral but non-isometric hyperbolic 2-orbifolds
(due to B. Linowitz and J. Voight).
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Constructing arithmetic manifolds

Elementary results from geometric group theory:

Isom+(H2) ∼= PSL2(R).

Every orientable hyperbolic 2-manifold is of the form
H2/Γ for some discrete subgroup Γ of PSL2(R).

We want to generalize the following construction of PSL2(Z):

M2(Q) ⊃M2(Z) −→ SL2(Z) −→ PSL2(Z).

We can replace M2(Q) with a quaternion algebra over a
number field and M2(Z) with a quaternion order. Manifolds
that arise in this manner are called arithmetic manifolds.30 / 38
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Results for arithmetic, hyperbolic 2-manifolds

Theorem (Reid, 1992)

If M is an arithmetic, hyperbolic
2-manifold and LS(M) = LS(N)
then M and N are commensurable.
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Our Geometric Results

Motivating Questions:

Can we make Reid’s result effective?

How quickly does the number of commensurability classes
of arithmetic, hyperbolic 2-manifolds grow?

If the length spectra have a great deal of overlap, must
the corresponding arithmetic, hyperbolic 2-manifolds be
commensurable?
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Effective Rigidity

To describe what we mean by effective rigidity some
arithmetic facts will be useful.

Borel’s finiteness result. For each V ∈ R≥0 there are only
finitely many arithmetic hyperbolic 2- manifolds of volume at
most V .

A consequence of Borel’s result is that there exists L(V ) ∈ R≥0
such that if M and N are arithmetic surfaces of area at most
V and have the same geodesic lengths up to L(V ) then M and
N are commensurable.34 / 38
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The following is an effective version of Reid’s “isospectral
implies commensurable” result.

Theorem (Linowitz, McReynolds, Pollack, T.)

If M is an arithmetic hyperbolic surface then

L(V ) ≤ c1ec2 log(V )V 130

for absolute, effectively computable constants c1 and c2.
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Growth Rate of Commensurability Classes

Given a commensurability class C of arithmetic hyperbolic
2-manifolds, we define the volume VC of C to be the minimum
volume achieved by its members.

Theorem (Linowitz, McReynolds, Pollack, T.)

Let k be a totally real number field of degree nk and let Nk(V )
denote the number of commensurability classes C of compact
arithmetic hyperbolic 2-manifolds arising from quaternion
algebras over k with VC ≤ V . Then for all sufficiently large V
we have

Nk(V )� κ2nk−1V 130

ζk(2)
,

where ζk(s) is the Dedekind zeta function of k and κ is the
residue of ζk(s) at s = 1.
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Counting Arithmetic Manifolds

Let π(V, S) denote the maximum cardinality of a collection of
pairwise non-commensurable arithmetic hyperbolic 2–orbifolds
derived from quaternion algebras, each of which has volume
less than V and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2014)

If π(V, S)→∞ as V →∞, then there are integers
1 ≤ r, s ≤ |S| and constants c1, c2 > 0 such that

c1V

log(V )1−
1
2r
≤ π(V, S) ≤ c2V

log(V )1−
1
2s

for all sufficiently large V .

37 / 38

Lola Thompson Counting quaternion algebras



Counting
quaternion

algebras

Lola
Thompson

Quaternion
algebras

Our number
theory results

Geometric
Background

Our
geometric
results

Thank you!
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