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Geometric Motivation

Let M be a compact Riemannian manifold.

The Laplace eigenvalue spectrum of M , denoted E(M), is
the multiset of eigenvalues of the Laplacian of M .

The geodesic length spectrum, denoted LS(M), is the
multiset of lengths of closed geodesics on M with fundamental
group π1(M).

Inverse spectral geometry asks for the extent to which the
spectra of M determine its geometry and topology.3 / 24
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Geometric terminology

Definition

Two manifolds are commensurable if and only if they have a
common finite degree covering space.

Definition

Two manifolds are isometric if there is an isometry between
them.

Definition

M and N are isospectral if E(M) = E(N), and length
isospectral if LS(M) = LS(N).
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Inverse Problems

Some natural inverse problems:

If LS(M) = LS(N), is M isometric to N?

If LS(M) = LS(N), are M and N commensurable?

If LS(M) = LS(N), what can be said about N?

We can ask the same questions for E(M).
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Can you hear the shape of a drum?

Leon Green (1960) asked if the spectrum of M determines its
isometry class.

The spectrum of M is essentially the collection of frequencies
produced by a drumhead shaped like M .

Mark Kac (1966) popularized this
question for planar domains:

Can you hear the shape of a drum?
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Can you hear the shape of a drum?

Milnor had already shown that isometry class is not, in general,
a spectral invariant.

Theorem (Milnor, 1964)

There exist lattices Γ1,Γ2 ⊂ R16 such that the tori R16/Γ1 and
R16/Γ2 are isospectral but not isometric.
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Known Results

Theorem (Vigneras, 1980)

There exist isospectral but not
isometric hyperbolic 2 and
3-manifolds.
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Can you hear the shape of a drum?

Kac’s question was finally answered in 1992.

Theorem (Gordon, Webb, Wolpert, 1992)

One cannot hear the shape of a drum.
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Known Results (for surfaces)

Theorem (Reid, 1992)

If M is an arithmetic, hyperbolic
surface and LS(M) = LS(N) then
M and N are commensurable.

Lubotzky, Samuels and Vishne (2005) showed: if one considers
the symmetric space of PGLn(R) or PGLn(C) then, for n > 3,
Reid’s result is false and one can obtain arbitrarily large families
of isospectral yet non-commensurable arithmetic manifolds.
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Known Results (for 3-manifolds)

In the context of hyperbolic 3-manifolds, Reid’s result is due to
Chinburg, Hamilton, Long and Reid.

Theorem (Chinburg, Hamilton, Long, Reid, 2008)

If M and N are arithmetic hyperbolic 3-manifolds and
LS(M) = LS(N) then M and N are commensurable.
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The length spectrum of hyperbolic 3-manifolds

Theorem (Futer and Millichap, 2016)

For every sufficiently large n > 0 there exists a pair of
non-isometric finite-volume hyperbolic 3-manifolds {Nn, N

µ
n }

such that:

1 vol(Nn) = vol(Nµ
n ), where this volume grows coarsely

linearly with n.

2 The (complex) length spectra of Nn and Nµ
n agree up to

length n.

3 Nn and Nµ
n have at least en/n closed geodesics up to

length n.

4 Nn and Nµ
n are not commensurable.
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Our work

Motivating Question: If the length spectra have a great deal
of overlap, must the corresponding manifolds be
commensurable?
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Let π(V, S) denote the maximum cardinality of a collection of
pairwise non-commensurable arithmetic hyperbolic 3–orbifolds
derived from quaternion algebras, each of which has volume
less than V and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2014)

If π(V, S)→∞ as V →∞, then there are integers
1 ≤ r, s ≤ |S| and constants c1, c2 > 0 such that

c1V

log(V )1− 1
2r
≤ π(V, S) ≤ c2V

log(V )1− 1
2s

for all sufficiently large V .
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Our new result

Theorem (Linowitz, McReynolds, Pollack, T., 2017)

Let M be an arithmetic hyperbolic 3–orbifold which is derived
from a quaternion algebra and let S be a finite subset of the
length spectrum of M . Suppose that π(V, S)→∞ as V →∞.
Then, for every k ≥ 2, there is a constant C > 0 such that
there are infinitely many k–tuples M1, . . . ,Mk of arithmetic
hyperbolic 3–orbifolds which are pairwise non-commensurable,
have length spectra containing S, and volumes satisfying
|vol(Mi)− vol(Mj)| < C for all 1 ≤ i, j ≤ k.
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Where number theory enters the picture

Let M be an arithmetic hyperbolic 3–orbifold arising from
(K,A) with fundamental group Γ < PSL2(C).

The closed geodesics

cγ : S1 −→M

on M are in bijection with the Γ–conjugacy classes [γ]Γ of
hyperbolic elements γ in Γ.

The associated geodesic length `(cγ) is given by

cosh
`(cγ)

2
= ±Tr(γ)

2
.
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Where number theory enters the picture

We denote by λγ the unique eigenvalue of γ with |λγ | > 1.

Each closed geodesic cγ determines a maximal subfield Kγ of
the quaternion algebra A.

Specifically, Kγ = K(λγ).

As Γ is arithmetic, λγ is in O1
Kγ

.

17 / 24

Lola Thompson Bounded gaps and length spectra



Bounded gaps
and length
spectra

Lola
Thompson

Geometric
motivation

Our work

Where
number
theory enters
the picture

Bounded gaps
between
primes

Where number theory enters the picture

Borel’s Covolume Formula:

vol(H3/ΓO
1
K) =

|∆K |3/2ζK(2)

(4π2)nK−1

∏
P∈Ramf (A)

(N(P )− 1) .

BCF shows: If two orbifolds have the same field of definition K
but their associated quaternion algebras ramify at different
primes, then their volumes will differ by some function of the
norm of the primes that ramify.

So, primes with bounded gaps between them produce orbifolds
with volumes lying in bounded length intervals.
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Where number theory enters the picture

We also want these orbifolds to have length spectra containing
S, which will happen if and only if the quadratic extensions Kγ

embed into the quaternion algebras.

One can arrange this by choosing primes (ramifying in the
quaternion algebras) to lie in certain appropriately-chosen
Chebotarev sets.
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Bounded gaps between primes

Theorem (Zhang, 2013)

There are infinitely many pairs of primes that differ by at most
70, 000, 000.
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Bounded gaps between primes

Theorem (Maynard-Tao, 2013)

Let m ≥ 2. There for any admissible k-tuple H = (h1, ..., hk)
with “large enough” k (relative to m), there are infinitely many
n such that at least m of n+ h1, ..., n+ hk are prime.
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Bounded gaps between primes in Chebotarev sets

Theorem (Thorner, 2014)

Let K/Q be a Galois extension of number fields with Galois
group G and discriminant ∆, and let C be a conjugacy class of
G. Let P be the set of primes p - ∆ for which

(K/Q
p

)
= C.

Then there are infinitely many pairs of distinct primes
p1, p2 ∈ P such that |p1 − p2| ≤ c, where c is a constant
depending on G, C,∆.
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Bounded gaps between primes in Chebotarev sets

Theorem (Linowitz, McReynolds, Pollack, T., 2017)

Let L/K be a Galois extension of number fields, let C be a
conjugacy class of Gal(L/K), and let k be a positive integer.
Then, for a certain constant c = cL/K,C,k, there are infinitely
many k–tuples P1, . . . , Pk of prime ideals of K for which the
following hold:

1
(L/K
P1

)
= · · · =

(L/K
Pk

)
= C,

2 P1, . . . , Pk lie above distinct rational primes,

3 each of P1, . . . , Pk has degree 1,

4 |N(Pi)−N(Pj)| ≤ c, for each pair of i, j ∈ {1, 2, . . . , k}.

This extends Thorner’s work, which implies the case where
K = Q.
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Thank you!
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