Abelian surfaces over finite fields with prescribed groups

Chantal David (Concordia), Derek Garton (Portland State), Zachary Scherr (U. Penn), Arul Shankar (Harvard), Ethan Smith (Liberty) & Lola Thompson (Oberlin)

January 16, 2013
Definitions

Definition

An *elliptic curve* is a curve given by an equation of the form

\[y^2 = x^3 + ax + b \]

where \(a, b \in \mathbb{Q} \) and \(\Delta := -16(4a^3 + 27b^2) \) is nonzero.

We can represent the set of points on an elliptic curve as

\[E(\mathbb{Q}) := \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : y^2 = x^3 + ax + b\} \cup \{O\}, \]

where \(O \) is the point at infinity.

So, \(\#E(\mathbb{Q}) = 1 + \#(\text{rational solutions to } y^2 = x^3 + ax + b) \).
Elliptic curves over finite fields

We can reduce E/\mathbb{Q} to a curve over \mathbb{F}_p:

$$E(\mathbb{F}_p) := \{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : y^2 \equiv x^3 + ax + b \pmod{p}\} \cup \{\mathcal{O}\}.$$

Example: Consider $E : y^2 = x^3 + 2x + 1$ over \mathbb{F}_5.

<table>
<thead>
<tr>
<th>x</th>
<th>$x^3 + 2x + 1 \pmod{5}$</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1, 4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2, 3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2, 3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>–</td>
</tr>
</tbody>
</table>

$\therefore \#E(\mathbb{F}_5) = 2 + 2 + 2 + 1 = 7.$
The **group** of points on E/\mathbb{F}_p

The rational points on E over \mathbb{F}_p form an abelian group $E(\mathbb{F}_p)$ with

$$E(\mathbb{F}_p) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1n_2\mathbb{Z}.$$

One could ask: How often do certain groups occur as $E(\mathbb{F}_p)$ as we vary over E and p?
The **Cohen-Lenstra heuristics** predict that random abelian groups naturally occur with probability inversely proportional to the size of their automorphism groups.
An example of the Cohen-Lenstra phenomenon

Example: Cohen and Lenstra looked at the class groups of quadratic imaginary fields. They observed that, when $9 \mid h(-D)$:

- $\# \text{Aut}(\mathbb{Z}/9\mathbb{Z}) = \phi(9) = 6$
- $\# \text{Aut}(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) = 48$

So, we would expect $\mathbb{Z}/9\mathbb{Z}$ to occur with probability proportional to $1/6$ and we would expect $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ to occur with probability proportional to $1/48$.

Thus, $\mathbb{Z}/9\mathbb{Z}$ should be 8 times more likely to occur than $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

(Experimental results show that the ratio of occurrence of $\mathbb{Z}/9\mathbb{Z}$ versus $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is about 8 to 1.)
An example of the Cohen-Lenstra phenomenon

Example: Cohen and Lenstra looked at the class groups of quadratic imaginary fields. They observed that, when \(9 \mid h(-D) \):

- \(\# \text{Aut}(\mathbb{Z}/9\mathbb{Z}) = \varphi(9) = 6 \)
An example of the Cohen-Lenstra phenomenon

Example: Cohen and Lenstra looked at the class groups of quadratic imaginary fields. They observed that, when $9 \parallel h(-D)$:

- $\#\text{Aut}(\mathbb{Z}/9\mathbb{Z}) = \varphi(9) = 6$
- $\#\text{Aut}(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) = 48$.

(Experimental results show that the ratio of occurrence of $\mathbb{Z}/9\mathbb{Z}$ versus $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is about 8 to 1.)
An example of the Cohen-Lenstra phenomenon

Example: Cohen and Lenstra looked at the class groups of quadratic imaginary fields. They observed that, when $9 \mid h(-D)$:

- $\#\text{Aut}(\mathbb{Z}/9\mathbb{Z}) = \varphi(9) = 6$
- $\#\text{Aut}(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) = 48$.

So, we would expect $\mathbb{Z}/9\mathbb{Z}$ to occur with probability proportional to $1/6$ and we would expect $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ to occur with probability proportional to $1/48$.

(Experimental results show that the ratio of occurrence of $\mathbb{Z}/9\mathbb{Z}$ versus $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is about 8 to 1.)
Example: Cohen and Lenstra looked at the class groups of quadratic imaginary fields. They observed that, when $9 \mid h(-D)$:

- $\# \text{Aut} \left(\mathbb{Z}/9\mathbb{Z} \right) = \varphi(9) = 6$
- $\# \text{Aut} \left(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \right) = 48$.

So, we would expect $\mathbb{Z}/9\mathbb{Z}$ to occur with probability proportional to $1/6$ and we would expect $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ to occur with probability proportional to $1/48$.

Thus, $\mathbb{Z}/9\mathbb{Z}$ should be 8 times more likely to occur than $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

(Experimental results show that the ratio of occurrence of $\mathbb{Z}/9\mathbb{Z}$ versus $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is about 8 to 1.)
How often do certain groups occur as $E(\mathbb{F}_p)$?

Conjecture (Banks, Pappalardi, Shparlinski, 2012)

Completely split groups (when $n_2 = 1$) and very split groups (when n_2 is very small compared to n_1) occur with density 0.
Theorem (Chandee, David, Koukoupoloupolos, Smith)

Let $S(N_1, N_2)$ denote the set of integer pairs $n_1 \leq N_1$, $n_2 \leq N_2$ for which there exists a prime p and a curve E/\mathbb{F}_p with $E(\mathbb{F}_p) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1n_2\mathbb{Z}$. Then

$$\#S(N_1, N_2) = o(N_1 N_2)$$

when $N_1 \geq \exp(N_2^{1/2-\varepsilon})$.

Results for elliptic curves

Introduction

Cohen-Lenstra heuristics

Group classification for elliptic curves

Group classification for abelian surfaces

Abelian surfaces with prescribed groups
Let A be an abelian surface over \mathbb{F}_q. The points on A over \mathbb{F}_q form an abelian group $A(\mathbb{F}_q)$ with

$$A(\mathbb{F}_q) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1n_2\mathbb{Z} \times \mathbb{Z}/n_1n_2n_3\mathbb{Z} \times \mathbb{Z}/n_1n_2n_3n_4\mathbb{Z}.$$
The group of points on an abelian surface

Let A be an abelian surface over \mathbb{F}_q. The points on A over \mathbb{F}_q form an abelian group $A(\mathbb{F}_q)$ with

$$A(\mathbb{F}_q) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1n_2\mathbb{Z} \times \mathbb{Z}/n_1n_2n_3\mathbb{Z} \times \mathbb{Z}/n_1n_2n_3n_4\mathbb{Z}.$$

Q. How often do certain groups occur as the group of points on A/\mathbb{F}_q?

Cohen-Lenstra predicts:
The group of points on an abelian surface

Let A be an abelian surface over \mathbb{F}_q. The points on A over \mathbb{F}_q form an abelian group $A(\mathbb{F}_q)$ with

$$A(\mathbb{F}_q) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1n_2\mathbb{Z} \times \mathbb{Z}/n_1n_2n_3\mathbb{Z} \times \mathbb{Z}/n_1n_2n_3n_4\mathbb{Z}.$$

Q. How often do certain groups occur as the group of points on A/\mathbb{F}_q?

Cohen-Lenstra predicts:
- Cyclic groups are the most likely to occur
The group of points on an abelian surface

Let A be an abelian surface over \mathbb{F}_q. The points on A over \mathbb{F}_q form an abelian group $A(\mathbb{F}_q)$ with

$$A(\mathbb{F}_q) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1n_2\mathbb{Z} \times \mathbb{Z}/n_1n_2n_3\mathbb{Z} \times \mathbb{Z}/n_1n_2n_3n_4\mathbb{Z}.$$

Q. How often do certain groups occur as the group of points on A/\mathbb{F}_q?

Cohen-Lenstra predicts:

- Cyclic groups are the most likely to occur
- “Very split” groups (groups when n_1, n_2 are very large relative to n_3, n_4) are not very likely to occur.
Suppose that \(n_1, n_2, n_3, n_4 \) are positive integers. If
\[
 n_1 > 60n_2^{1/4} n_3^{3/2} n_4^{3/4} + 1,
\]
then there are no abelian surfaces \(A/\mathbb{F}_q \) with
\[
 A(\mathbb{F}_q) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1 n_2\mathbb{Z} \times \mathbb{Z}/n_1 n_2 n_3\mathbb{Z} \times \mathbb{Z}/n_1 n_2 n_3 n_4\mathbb{Z}.
\]
Facts about Weil polynomials

Let $f_A(T)$ be the characteristic polynomial of the Frobenius element π_A of A/\mathbb{F}_q, which we call a Weil polynomial:
Facts about Weil polynomials

Let $f_A(T)$ be the characteristic polynomial of the Frobenius element π_A of A/\mathbb{F}_q, which we call a *Weil polynomial*:

- Its roots are $\{\omega_1, \overline{\omega_1}, \omega_2, \overline{\omega_2}\}$, where the ω_i's are *Weil numbers* (algebraic integers whose conjugates have absolute value $q^{1/2}$).
Facts about Weil polynomials

Let \(f_A(T) \) be the characteristic polynomial of the Frobenius element \(\pi_A \) of \(A/\mathbb{F}_q \), which we call a Weil polynomial:

1. Its roots are \(\{\omega_1, \overline{\omega_1}, \omega_2, \overline{\omega_2}\} \), where the \(\omega_i \)'s are Weil numbers (algebraic integers whose conjugates have absolute value \(q^{1/2} \)).
2. Tate-Honda theory gives a bijection between the set of conjugacy classes of Weil numbers and the set of isogeny classes of simple abelian varieties over \(\mathbb{F}_q \).
Facts about Weil polynomials

Let $f_A(T)$ be the characteristic polynomial of the Frobenius element π_A of A/\mathbb{F}_q, which we call a Weil polynomial:

- Its roots are $\{\omega_1, \omega_1^*, \omega_2, \omega_2^*\}$, where the ω_i’s are Weil numbers (algebraic integers whose conjugates have absolute value $q^{1/2}$).

- Tate-Honda theory gives a bijection between the set of conjugacy classes of Weil numbers and the set of isogeny classes of simple abelian varieties over \mathbb{F}_q.

- The number of \mathbb{F}_q-rational points on A is equal to $f_A(1)$.
Sometimes the algebra $\text{End}_{\mathbb{F}_q}(A) \otimes \mathbb{Q}$ is a field; other times it is not. (In general, the cases where $\text{End}_{\mathbb{F}_q}(A) \otimes \mathbb{Q}$ is not a field are much rarer.)

To handle these exceptional cases:

Theorem (Waterhouse, Xing)

The Weil polynomials $f_A(T)$ corresponding to abelian varieties A over k of dimension 2 whose algebra $\text{End}_{\mathbb{F}_q}(A) \otimes \mathbb{Q}$ is not a field are:

\[
\begin{align*}
 f_A(T) &= (T^2 - q)^2 \\
 f_A(T) &= (T^2 + q)^2 \\
 f_A(T) &= (T^2 \pm q^{1/2}T + q)^2
\end{align*}
\]
Xing proved that the group structures that arise are precisely:

\[\mathbb{A}(\mathbb{F}_q) \cong \left(\mathbb{Z}/(q - 1)\mathbb{Z} \right)^2 \]
\[\mathbb{A}(\mathbb{F}_q) \cong \left(\mathbb{Z}/\frac{q-1}{2}\mathbb{Z} \right)^2 \times \left(\mathbb{Z}/2\mathbb{Z} \right)^2 \]
\[\mathbb{A}(\mathbb{F}_q) \cong \mathbb{Z}/(q - 1)\mathbb{Z} \times \mathbb{Z}/\left(\frac{q-1}{2} \right)\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \]
\[\mathbb{A}(\mathbb{F}_q) \cong \left(\mathbb{Z}/(q + 1)\mathbb{Z} \right)^2 \]
\[\mathbb{A}(\mathbb{F}_q) \cong \left(\mathbb{Z}/(q \pm q^{1/2} + 1)\mathbb{Z} \right)^2 . \]
Xing proved that the group structures that arise are precisely:

\[A(F_q) \cong \left(\mathbb{Z}/(q - 1)\mathbb{Z} \right)^2 \]
\[A(F_q) \cong \left(\mathbb{Z}/\frac{q-1}{2}\mathbb{Z} \right)^2 \times (\mathbb{Z}/2\mathbb{Z})^2 \]
\[A(F_q) \cong \mathbb{Z}/(q - 1)\mathbb{Z} \times \mathbb{Z}/\frac{q-1}{2}\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \]
\[A(F_q) \cong (\mathbb{Z}/(q + 1)\mathbb{Z})^2 \]
\[A(F_q) \cong \left(\mathbb{Z}/(q \pm q^{1/2} + 1)\mathbb{Z} \right)^2. \]

Conclusion: We know exactly which groups can appear as the group of \(F_q \)-rational points on an Abelian surface whose algebra \(\text{End}_{F_q}(A) \otimes \mathbb{Q} \) is not a field!
What happens when $\text{End}_{F_q}(A) \otimes \mathbb{Q}$ is a field?

Theorem (Rück)

The set $f_A(T)$ for all abelian surfaces A whose algebra $\text{End}_{F_q}(A) \otimes \mathbb{Q}$ is a field is equal to the set of polynomials $f(T) = T^4 + a_1 T^3 + a_2 T^2 + a_1 q T + q^2$, where the integers a_1 and a_2 satisfy the following conditions:

(a) $|a_1| < 4q^{1/2}$ and $2|a_1|q^{1/2} - 2q < a_2 < a_1^2/4 + 2q$.

(b) $a_1^2 - 4a_2 + 8q$ is not a square in \mathbb{Z}.

(and some conditions on $\nu_p(a_1)$ and $\nu_p(a_2)$.)
Definition

Let ℓ be a prime and let $Q(T) = \sum_i Q_i T^i$ be a polynomial of degree d with $Q(0) = Q_0 \neq 0$. The Newton polygon $N_{p\ell}(Q)$ is the boundary of the lower convex hull of the points $(i, \nu_\ell(Q_i))$ for $0 \leq i \leq d$ in \mathbb{R}^2.

Example The Newton polygon corresponding to $f(x) = x^3 + 6x^2 + 10x + 8$ over \mathbb{Q}_2 is:

![Newton polygon diagram]

$\nu_\ell(Q_i)$
Hodge polygons

Definition

Let $0 \leq m_1 \leq m_2 \leq \cdots \leq m_r$ be nonnegative integers and let $H = \bigoplus_{i=1}^{r} \mathbb{Z}/\ell^{m_i} \mathbb{Z}$ be an abelian group of order ℓ^m. The Hodge polygon $H_{p\ell}(H, r)$ is the convex polygon with vertices $(i, \sum_{j=1}^{r-i} m_j)$ for $0 \leq i \leq r$. It has $(0, m)$ and $(r, 0)$ as its endpoints, and its slopes are $-m_r, \ldots, -m_1$.

Example

Hodge polygons corresponding to $H = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$ and $H = \mathbb{Z}/\ell^2\mathbb{Z}$ (respectively):

![Pic. 1](image1.png)

![Pic. 2](image2.png)
Key lemma

Theorem (Rybakov, 2010)

Let A be an abelian variety over a finite field with Weil polynomial f_A. Suppose f_A has no multiple roots. Let G be an abelian group of order $f_A(1)$. Then G is a group of points on some variety in the isogeny class of A if and only if the Newton polygon $N_{p\ell}(f_A(1 - t))$ lies on or above the Hodge polygon $H_{p\ell}(G_\ell, 2g)$ for any prime number ℓ.
Corollary to Rybakov’s criterion

Corollary (David, Garton, Scherr, Shankar, Smith, T.)

Suppose that

\[G = \mathbb{Z}/n_1 \mathbb{Z} \times \mathbb{Z}/n_1 n_2 \mathbb{Z} \times \mathbb{Z}/n_1 n_2 n_3 \mathbb{Z} \times \mathbb{Z}/n_1 n_2 n_3 n_4 \mathbb{Z}. \]

Then, in order for \(G \) to appear as the group of points on an abelian surface, the following system of congruences must be satisfied:

\[
\begin{align*}
q^2 + a_1 q + a_2 + a_1 + 1 & \equiv 0 \pmod{n_1^n n_2^3 n_3^2 n_4} \\
4 + 3a_1 + 2a_2 + qa_1 & \equiv 0 \pmod{n_1^3 n_1 n_3} \\
6 + 3a_1 + a_2 & \equiv 0 \pmod{n_1^2 n_2} \\
4 + a_1 & \equiv 0 \pmod{n_1}.
\end{align*}
\]
Proof of Corollary

Let $G = \mathbb{Z}/N_1\mathbb{Z} \times \mathbb{Z}/N_2\mathbb{Z} \times \mathbb{Z}/N_3\mathbb{Z} \times \mathbb{Z}/N_4\mathbb{Z}$ where $N_1 \mid N_2 \mid N_3 \mid N_4$. We will show that G is the group of points on some A/\mathbb{F}_q iff

$$\prod_{j=1}^{4-k} N_j \text{ divides } \frac{f_A^{(k)}(1)}{k!} \text{ for } k = 0, \ldots, 3.$$

- Write the Taylor expansion

$$f_A(1 - T) = \sum_{k=0}^{4} \frac{f_A^{(k)}(1)}{k!} (-T)^k.$$
Proof of Corollary

Let \(G = \mathbb{Z}/N_1\mathbb{Z} \times \mathbb{Z}/N_2\mathbb{Z} \times \mathbb{Z}/N_3\mathbb{Z} \times \mathbb{Z}/N_4\mathbb{Z} \) where \(N_1 \mid N_2 \mid N_3 \mid N_4 \). We will show that \(G \) is the group of points on some \(A/\mathbb{F}_q \) iff

\[
\prod_{j=1}^{4-k} N_j \text{ divides } \frac{f_A^{(k)}(1)}{k!} \text{ for } k = 0, \ldots, 3.
\]

- Write the Taylor expansion
 \[
f_A(1 - T) = \sum_{k=0}^{4} \frac{f_A^{(k)}(1)}{k!} (-T)^k.
 \]

- For each prime \(\ell \), Rybakov’s condition that \(N_{\ell} f_A(1 - T) \) lies on or above \(H_{\ell}(G_{\ell}, 4) \) means that
 \[
 \nu_{\ell} \left(\prod_{j=1}^{4-k} N_j \right) \leq \nu_{\ell} \left(\frac{f_A^{(k)}(1)}{k!} \right) \text{ for } k = 0, \ldots, 3.
 \]
A “density 0” result

Theorem (David, Garton, Scherr, Shankar, Smith, T.)

If
\[
\frac{N_1 N_2^{1/4}}{N_3^{1/2} N_4^{1/4}} \to \infty \quad \text{as} \quad N_2 N_4 \to \infty,
\]

then
\[
\#S(N_1, N_2, N_3, N_4) = o(N_1 N_2 N_3 N_4) \quad \text{as} \quad N_2 N_4 \to \infty.
\]
Thank you!