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Definitions

Definition

An elliptic curve is a curve given by an equation of the form

y2 = x3 + ax+ b

where a, b ∈ Q and ∆ := −16(4a3 + 27b2) is nonzero.

We can represent the set of points on an elliptic curve as

E(Q) := {(x, y) ∈ Q×Q : y2 = x3 + ax+ b} ∪ {O},

where O is the point at infinity.

So, #E(Q) = 1 + #(rational solutions to y2 = x3 + ax+ b).
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Elliptic curves over finite fields

We can reduce E/Q to a curve over Fp:

E(Fp) := {(x, y) ∈ Fp×Fp : y2 ≡ x3+ax+b (mod p)}∪{O}.

Example: Consider E : y2 = x3 + 2x+ 1 over F5.

x x3 + 2x+ 1 (mod 5) y

0 1 1, 4
1 4 2, 3
2 3 –
3 4 2, 3
4 3 –

∴ #E(F5) = 2 + 2 + 2 + 1 = 7.
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The group of points on E/Fp

The rational points on E over Fp form an abelian group E(Fp)
with

E(Fp) ∼= Z/n1Z× Z/n1n2Z.

One could ask: How often do certain groups occur as E(Fp) as
we vary over E and p?
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Cohen-Lenstra heuristics

The Cohen-Lenstra heuristics predict that random abelian
groups naturally occur with probability inversely proportional to
the size of their automorphism groups.
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An example of the Cohen-Lenstra phenomenon

Example: Cohen and Lenstra looked at the class groups of
quadratic imaginary fields. They observed that, when
9 || h(−D):

#Aut(Z/9Z) = ϕ(9) = 6

#Aut(Z/3Z× Z/3Z) = 48.

So, we would expect Z/9Z to occur with probability
proportional to 1/6 and we would expect Z/3Z× Z/3Z to
occur with probability proportional to 1/48.

Thus, Z/9Z should be 8 times more likely to occur than
Z/3Z× Z/3Z.

(Experimental results show that the ratio of occurrence of
Z/9Z versus Z/3Z× Z/3Z is about 8 to 1.)
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How often do certain groups occur as E(Fp)?

Conjecture (Banks, Pappalardi, Shparlinski, 2012)

Completely split groups (when n2 = 1) and very split groups
(when n2 is very small compared to n1) occur with density 0.
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Results for elliptic curves

Theorem (Chandee, David, Koukoupoulopoulos, Smith)

Let S(N1, N2) denote the set of integer pairs n1 ≤ N1,
n2 ≤ N2 for which there exists a prime p and a curve E/Fp

with E(Fp) ∼= Z/n1Z× Z/n1n2Z. Then

#S(N1, N2) = o(N1N2)

when N1 ≥ exp(N
1/2−ε
2 ).
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The group of points on an abelian surface

Let A be an abelian surface over Fq. The points on A over Fq

form an abelian group A(Fq) with

A(Fq) ∼= Z/n1Z× Z/n1n2Z× Z/n1n2n3Z× Z/n1n2n3n4Z.

Q. How often do certain groups occur as the group of points
on A/Fq?

Cohen-Lenstra predicts:

Cyclic groups are the most likely to occur

“Very split” groups (groups when n1, n2 are very large
relative to n3, n4) are not very likely to occur.
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Group classification results for abelian surfaces

Theorem (David, Garton, Scherr, Shankar, Smith, T.)

Suppose that n1, n2, n3, n4 are positive integers. If

n1 > 60n
1/4
2 n

3/2
3 n

3/4
4 + 1,

then there are no abelian surfaces A/Fq with

A(Fq) ∼= Z/n1Z× Z/n1n2Z× Z/n1n2n3Z× Z/n1n2n3n4Z.
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Facts about Weil polynomials

Let fA(T ) be the characteristic polynomial of the Frobenius
element πA of A/Fq, which we call a Weil polynomial :

Its roots are {ω1, ω1, ω2, ω2}, where the ωi’s are Weil
numbers (algebraic integers whose conjugates have
absolute value q1/2).

Tate-Honda theory gives a bijection between the set of
conjugacy classes of Weil numbers and the set of isogeny
classes of simple abelian varieties over Fq.

The number of Fq-rational points on A is equal to fA(1).
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EndFq
(A)⊗Q: a field, or not a field?

Sometimes the algebra EndFq(A)⊗Q is a field; other times it
is not. (In general, the cases where EndFq(A)⊗Q is not a field
are much rarer.)

To handle these exceptional cases:

Theorem (Waterhouse, Xing)

The Weil polynomials fA(T ) corresponding to abelian varieties
A over k of dimension 2 whose algebra EndFq(A)⊗Q is not a
field are:

fA(T ) = (T 2 − q)2

fA(T ) = (T 2 + q)2

fA(T ) = (T 2 ± q1/2T + q)2
22 / 33
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Characterization when EndFq
(A)⊗Q is not a field

Xing proved that the group structures that arise are precisely:

A(Fq) ' (Z/(q − 1)Z)2

A(Fq) '
(
Z/ q−1

2 Z
)2
× (Z/2Z)2

A(Fq) ' Z/(q − 1)Z× Z/ q−1
2 Z× Z/2Z

A(Fq) ' (Z/(q + 1)Z)2

A(Fq) '
(
Z/(q ± q1/2 + 1)Z

)2
.

Conclusion: We know exactly which groups can appear as the
group of Fq-rational points on an Abelian surface whose
algebra EndFq(A)⊗Q is not a field!
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What happens when EndFq
(A)⊗Q is a field?

Theorem (Rück)

The set fA(T ) for all abelian surfaces A whose algebra
EndFq(A)⊗Q is a field is equal to the set of polynomials
f(T ) = T 4 + a1T

3 + a2T
2 + a1qT + q2, where the integers a1

and a2 satisfy the following conditions:

(a) |a1| < 4q1/2 and 2|a1|q1/2 − 2q < a2 < a21/4 + 2q.

(b) a21 − 4a2 + 8q is not a square in Z

(and some conditions on νp(a1) and νp(a2).)25 / 33
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Newton polygons

Definition

Let ` be a prime and let Q(T ) =
∑

iQiT
i be a polynomial of

degree d with Q(0) = Q0 6= 0. The Newton polygon Np`(Q) is
the boundary of the lower convex hull of the points (i, ν`(Qi))
for 0 ≤ i ≤ d in R2.

Example The Newton polygon corresponding to
f(x) = x3 + 6x2 + 10x+ 8 over Q2 is:
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Hodge polygons

Definition

Let 0 ≤ m1 ≤ m2 ≤ · · · ≤ mr be nonnegative integers and let
H = ⊕m

i=1Z/`miZ be an abelian group of order `m. The Hodge
polygon Hp`(H, r) is the convex polygon with vertices
(i,
∑r−i

j=1mj) for 0 ≤ i ≤ r. It has (0,m) and (r, 0) as its
endpoints, and its slopes are −mr, ...,−m1.

Example Hodge polygons corresponding to H = Z/`Z× Z/`Z
and H = Z/`2Z (respectively):
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Key lemma

Theorem (Rybakov, 2010)

Let A be an abelian variety over a finite field with Weil
polynomial fA. Suppose fA has no multiple roots. Let G be an
abelian group of order fA(1). Then G is a group of points on
some variety in the isogeny class of A if and only if the Newton
polygon Np`(fA(1− t)) lies on or above the Hodge polygon
Hp`(G`, 2g) for any prime number `.
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Corollary to Rybakov’s criterion

Corollary (David, Garton, Scherr, Shankar, Smith, T.)

Suppose that

G = Z/n1Z× Z/n1n2Z× Z/n1n2n3Z× Z/n1n2n3n4Z.

Then, in order for G to appear as the group of points on an
abelian surface, the following system of congruences must be
satisfied:

q2 + a1q + a2 + a1 + 1 ≡ 0 (mod n41n
3
2n

2
3n4)

4 + 3a1 + 2a2 + qa1 ≡ 0 (mod n31n
2
1n3)

6 + 3a1 + a2 ≡ 0 (mod n21n2)

4 + a1 ≡ 0 (mod n1).
29 / 33
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Proof of Corollary

Let G = Z/N1Z× Z/N2Z× Z/N3Z× Z/N4Z where
N1 | N2 | N3 | N4. We will show that G is the group of points
on some A/Fq iff

4−k∏
j=1

Nj divides
f
(k)
A (1)

k!
for k = 0, ..., 3.

Write the Taylor expansion

fA(1− T ) =
∑4

k=0
f
(k)
A (1)
k! (−T )k.

For each prime `, Rybakov’s condition that
Np`(fA(1− T )) lies on or above Hp`(G`, 4) means that

ν`(

4−k∏
j=1

Nj) ≤ ν`

(
f
(k)
A (1)

k!

)
for k = 0, ..., 3.
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Np`(fA(1− T )) lies on or above Hp`(G`, 4) means that

ν`(

4−k∏
j=1

Nj) ≤ ν`

(
f
(k)
A (1)

k!

)
for k = 0, ..., 3.
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A “density 0” result

Theorem (David, Garton, Scherr, Shankar, Smith, T.)

If
N1N

1/4
2

N
1/2
3 N

1/4
4

→∞ as N2N4 →∞,

then

#S(N1, N2, N3, N4) = o(N1N2N3N4) as N2N4 →∞.
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Thank you!
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