Sums of proper divisors with missing digits

Benli, Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Sums of proper divisors with missing digits

Kübra Benli (U. Lethbridge)
Giulia Cesana (U. Köln)
Cécile Dartyge (U. de Lorraine)
Charlotte Dombrowsky (U. Leiden)
Lola Thompson (Utrecht U.)

July 3, 2023

The $s(n)$ function

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky
\& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Definition

Let $s(n)$ denote the sum of proper divisors of n.

Example: $s(p)=1$ for any prime p

Example: $s(12)=1+2+3+4+6=16$

We can write $s(n)=\sigma(n)-n$, where $\sigma(n)$ is the sum-of-divisors function.

Perfect numbers

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction

The image of

The preimage of s

Integers with missing digits

Our results

$$
s(6)=1+2+3=6
$$

Definition

n is perfect if $s(n)=n$.

Amicable pairs

Sums of proper divisors with missing digits

Benli,

Cesana,
Dartyge, Dombrowsky
\& Thompson

Definition
 If $s(\mathrm{n})=\mathrm{m}, s(\mathrm{~m})=\mathrm{n}$, and $\mathrm{m} \neq \mathrm{n}$, then n and m form an amicable pair.

Example (Pythagoras):

$$
s(220)=284, \quad s(284)=220
$$

Motivating questions

Sums of proper divisors with missing digits

Benli,
Cesana, Dartyge, Dombrowsky \& Thompson

Introduction

The image of s

The preimage of s

Integers with missing digits

Our results
"Studying the comparison of $s(n)$ to n led to theorems of Schoenberg, Davenport, and Erdős-Wintner, and the birth of probabilistic number theory." -Carl Pomerance

In this talk, we will focus on two particular questions concerning the function $s(n)$:
(1) Which numbers are of the form $s(n)$?
(2) How large is the set $s^{-1}(n)$?

And then we will involve the integers with missing digits...

Benli, Cesana, Dartyge, Dombrowsky \& Thompson
Sums of proper divisors with missing digits

Sums of

 properdivisors with missing digits

Benli,

Cesana,
Dartyge, Dombrowsky
\& Thompson

Introduction

The image of s

The image of s

The preimage of s

Integers with missing digits

Our results

Odd integers in the image of s

Sums of proper divisors with missing digits

Benli,

Cesana,
Dartyge, Dombrowsky
\& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

It is easy to see that almost all odd numbers are contained in the image of s :

Odd integers in the image of s

Sums of proper divisors with missing digits

Benli,

Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

It is easy to see that almost all odd numbers are contained in the image of s :

If p, q are primes with $p \neq q$, then $s(p q)=p+q+1$.

Odd integers in the image of s

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky
\& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

It is easy to see that almost all odd numbers are contained in the image of s :

If p, q are primes with $p \neq q$, then $s(p q)=p+q+1$.

Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

Odd integers in the image of s

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction

The image of s

The preimage of s

Integers with missing digits

Our results

It is easy to see that almost all odd numbers are contained in the image of s :

If p, q are primes with $p \neq q$, then $s(p q)=p+q+1$.
Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

This has actually been proven for all but an exceptional set with asymptotic density 0 !

Odd integers in the image of s

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction

The image of s

The preimage of s

Integers with missing digits

Our results

It is easy to see that almost all odd numbers are contained in the image of s :

If p, q are primes with $p \neq q$, then $s(p q)=p+q+1$.
Strong Goldbach's Conjecture: All even integers ≥ 8 are the sum of two unequal primes.

This has actually been proven for all but an exceptional set with asymptotic density 0 !

So almost all odd numbers ≥ 9 are values of s.

What about even numbers?

Sums of proper divisors with missing digits

Benli, Cesana, Dartyge, Dombrowsky \& Thompson

Introduction

The image of

The preimage of s

Integers with missing digits

Our results

Theorem (Erdős, 1973)
A positive proportion of even integers are missing from the image of s.

Theorem (Luca \& Pomerance, 2014)

A positive proportion of even integers are in the image of s.

The image of s

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

The function s can map sets of asymptotic density 0 to sets with positive asymptotic density.

Example If $\mathcal{A}=\{p q: p, q$ prime $\}$ then \mathcal{A} has asymptotic density 0 but $s(\mathcal{A})$ has asymptotic density $1 / 2$.

Example Erdős constructed sets \mathcal{A} of positive density such that $s^{-1}(\mathcal{A})$ not only has density 0 but is, in fact, empty.

Sums of proper divisors with missing digits

Benli,

Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of
s

The preimage of s

Integers with missing digits

Our results

The preimage of s

> What can be said about $s^{-1}(\mathcal{A})$ when \mathcal{A} has asymptotic density 0 ?

The EGPS Conjecture

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Conjecture (Erdős, Granville, Pomerance, Spiro, 1990)

Let \mathcal{A} be a set with asymptotic density 0 . Then $s^{-1}(\mathcal{A})$ also has asymptotic density 0 .

Special cases of EGPS

Sums of proper divisors with missing digits

Benli,
Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Some special cases of EGPS have been proven:

- (Pollack, 2014) If \mathcal{A} is the set of primes, then $s^{-1}(\mathcal{A})$ has asymptotic density 0 .
- (Troupe, 2015) If $\mathcal{A}_{\epsilon}=\{m:|\omega(m)-\log \log m|>\epsilon \log \log m\}$ then $s^{-1}\left(\mathcal{A}_{\epsilon}\right)$ has asymptotic density 0 .
- (Pollack, 2015) If \mathcal{A} is the set of palindromes in any given base, then $s^{-1}(\mathcal{A})$ has asymptotic density 0 .
- (Troupe, 2020) If \mathcal{A} is the set of integers that can be written as a sum of two squares, then $s^{-1}(\mathcal{A})$ has asymptotic density 0 .

Partial Progress on EGPS

Sums of proper divisors with missing digits

Benli, Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Theorem (Pollack, Pomerance, T., 2017)
Let $\epsilon \rightarrow 0$ as $x \rightarrow \infty$. Suppose \mathcal{A} is a set of at most $x^{1 / 2+\epsilon}$ positive integers. Then, as $x \rightarrow \infty$,

$$
\#\{n \leq x: s(n) \in \mathcal{A}\}=o_{\epsilon}(x)
$$

uniformly in \mathcal{A}.

Consequences

Sums of proper divisors with missing digits

Benli,

Cesana,
Dartyge, Dombrowsky
\& Thompson
Immediate consequences of our result:

Introduction
The image of
s

The preimage of s

Integers with missing digits

Our results

- If \mathcal{A} is the set of palindromes in any given base, then $s^{-1}(\mathcal{A})$ has density 0 .
- If \mathcal{A} is the set of squares, then $s^{-1}(\mathcal{A})$ has density 0 .

Other recent related problems

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Some very recent progress on $s(n)$:

- (Pollack and Singha Roy, 2022) For any fixed $k \geq 4$, the k-th power-free values of n and $s(n)$ are equally common.
- (Lebowitz-Lockard, Pollack, Singha Roy, 2023) The values of $s(n)$ (for composite n) are equidistributed among the residue classes modulo p for small primes p.
- (Pollack and Troupe, 2023) The function $\omega(s(n))$ has the same mean and variance as $\omega(n)$.

Sums of proper divisors with missing digits

Benli, Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Lebowitz-Lockard, Pollack, Singha Roy, and Troupe

```
    Sums of
    proper
divisors with
missing digits
    Benli,
    Cesana,
    Dartyge,
Dombrowsky
& Thompson
Introduction
The image of
s
The preimage
of s
Integers with
missing digits
```


Integers with missing digits

Defining integers with restricted digits

Sums of proper divisors with missing digits

Benli,
Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

For a proper subset $\mathcal{D} \subsetneq\{0, \ldots, g-1\}$ such that $0 \in \mathcal{D}$, we define

$$
\mathcal{W}_{\mathcal{D}}:=\left\{n \in \mathbb{N}: n=\sum_{j \geq 0} \varepsilon_{j}(n) g^{j}, \varepsilon_{j}(n) \in \mathcal{D}\right\}
$$

and

$$
\mathcal{W}_{\mathcal{D}}(x):=\mathcal{W}_{\mathcal{D}} \cap[1, x] .
$$

Notice that this set has asymptotic density 0 .

Early results on integers with missing digits

Sums of proper divisors with missing digits

Benli, Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of

The preimage of s

Integers with missing digits

Our results

Theorem (Erdős, Mauduit, and Sárközy, 1998)
 Integers with missing digits are well-distributed in arithmetic progressions.

Some of my co-author's work

Sums of proper divisors with missing digits

Benli, Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of

The preimage of s

Integers with missing digits

Our results

Theorem (Dartyge and Mauduit, 2000)

There exist infinitely many $n \in \mathcal{W}_{\{0,1\}}$ with at most $(1+o(1)) 8 g / \pi$ prime factors as $g \rightarrow \infty$.

Primes with missing digits

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of

The preimage of s

Integers with missing digits

Our results

Theorem (Maynard, 2019)

There are infinitely many primes with missing digits.

Polynomial values with missing digits

Sums of proper divisors with missing digits

Benli, Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Theorem (Maynard, 2022)

There are infinitely many n such that $P(n) \in \mathcal{W}_{\mathcal{D}}$, for any given non-constant polynomial $P \in \mathbb{Z}[X]$, large enough base g, and $\mathcal{D}=\{0, \ldots, g-1\} \backslash\left\{a_{0}\right\}$.

Our WINE Project

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Our WINE Project: we study $\mathcal{W}_{s, \mathcal{D}}:=s^{-1}\left(\mathcal{W}_{\mathcal{D}}\right)$.

Sums of proper divisors with missing digits

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Theorem (Benli, Cesana, Dartyge, Dombrowsky, T., 2023) Let \mathcal{A} be a set of integers with missing digits in any base $g \geq 3$. Then $s^{-1}(\mathcal{A})$ has asymptotic density 0 .

In other words, the EGPS Conjecture holds for sets of integers with missing digits!

An effective result

Sums of proper divisors with missing digits

Benli, Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction The image of s

The preimage of s

Integers with missing digits

Our results

Theorem (Benli, Cesana, Dartyge, Dombrowsky, T., 2023)

 Let $g \geq 3, \mathcal{D} \subsetneq\{0, \ldots, g-1\}$ be a nonempty subset. Then for all x sufficiently large,$$
\# \mathcal{W}_{s, \mathcal{D}}(x)=\# s^{-1}\left(\mathcal{W}_{\mathcal{D}}(x)\right) \leq \frac{x}{\exp \left(\left(\log _{2} x\right)^{1+o(1)}\right)}
$$

How sharp is our bound?

Sums of proper divisors with missing digits

Benli, Cesana, Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results

Recall that $s(p)=1$ for all primes p.

Then, if \mathcal{D} contains 1 , it follows that

$$
\# \mathcal{W}_{s, \mathcal{D}}(x) \geq \pi(x) \sim \frac{x}{\log x}
$$

as $x \rightarrow \infty$.

Thus, our exponent of $1+o(1)$ is optimal for arbitrary g, \mathcal{D}.

An application of Maynard's work

Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Theorem (Benli, Cesana, Dartyge, Dombrowsky, T., 2023)

 The function $s(n)$ takes infinitely many values in $\mathcal{W}_{\mathcal{D}}$.Sums of proper divisors with missing digits

Benli,
Cesana,
Dartyge, Dombrowsky \& Thompson

Introduction
The image of s

The preimage of s

Integers with missing digits

Our results
Merci!

