Counting and

 effective rigidityLola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Our
Geometric Results

Counting and effective rigidity in algebra and geometry

Lola Thompson

Oberlin College

June 13, 2018

Collaborators

 effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background

Our Geometric Results

Joint work with: Ben Linowitz (Oberlin), Ben McReynolds (Purdue), and Paul Pollack (UGA).

Overview

Counting and effective rigidity

Lola Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background

Our Goal: Prove effective versions of rigidity results for arithmetic hyperbolic 2 - and 3 -manifolds.

Main Idea: We exploit the correspondence between maximal subfields of quaternion algebras and lengths of geodesics on arithmetic hyperbolic 2 - and 3 -manifolds.

Talk Overview:

- Brief introduction to quaternion algebras
- Our results on counting quaternion algebras
- Geometric background
- How to construct surfaces from quaternion algebras
- Our results on surfaces

Quaternion algebras and orders

```
Counting and
    effective
    rigidity
        Lola
    Thompson
Quaternion
algebras and
orders
Our Algebraic
Results
Geometric
Background
```


A brief introduction to quaternion algebras and orders

Quaternion algebras and orders

In the 1830s and 1840s William Rowan Hamilton sought a number system which would play a role in three-dimensional geometry analogous to that of the complex numbers in two-dimensional geometry.
"Every morning in the early part of the above-cited month [October 1843], on my coming down to breakfast, your (then) little brother William Edwin, and yourself, used to ask me: 'Well, Papa, can you multiply triplets?' Whereto I was always obliged to reply, with a sad shake of the head: 'No, I can only add and subtract them."

- Hamilton (in a letter to his son)

Quaternion algebras and orders

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Our
Geometric Results

Theorem (Hamilton, 1843)

The \mathbb{R}-algebra \mathbb{H} with basis $\{1, i, j, i j\}$ and defining relations

$$
i^{2}=-1 \quad j^{2}=-1 \quad i j=-j i
$$

is a four-dimensional division algebra.

Hamilton was so excited by this discovery that he carved these relations into the stone of the Brougham Bridge!

Quaternion algebras and orders

Counting and effective rigidity

Lola

 ThompsonQuaternion algebras and orders

Our Algebraic Results

Geometric Background Our Geometric Results

Quaternion algebras and orders

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Our
Geometric Results

Write $(-1,-1, \mathbb{R})$ instead of \mathbb{H}.

This notation suggests a number of ways to generalize \mathbb{H}.

For example, let $(1,1, \mathbb{R})$ be the \mathbb{R}-algebra with basis $\{1, i, j, i j\}$ and defining relations

$$
i^{2}=1 \quad j^{2}=1 \quad i j=-j i
$$

Then $(1,1, \mathbb{R}) \cong \mathrm{M}_{2}(\mathbb{R})$ via $i \mapsto\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $j \mapsto\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.

Quaternion algebras and orders

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic

Results
Geometric Background

More generally, we can define (a, b, \mathbb{R}) to be the \mathbb{R}-algebra with basis $\{1, i, j, i j\}$ and defining relations

$$
i^{2}=a \quad j^{2}=b \quad i j=-j i \quad a, b \in \mathbb{R}^{*}
$$

It's not too hard to show that

- $(a, b, \mathbb{R}) \cong \mathbb{H}$ if $a, b<0$ and
- $(a, b, \mathbb{R}) \cong \mathrm{M}_{2}(\mathbb{R})$ otherwise.

Thus (a, b, \mathbb{R}) is either a division algebra or isomorphic to $\mathrm{M}_{2}(\mathbb{R})$.

Quaternion algebras and orders

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

There are other ways that we could have generalized $(-1,-1, \mathbb{R})$.

If F is a field of characteristic zero and $a, b \in F^{*}$ we can define the generalized quaternion algebra (a, b, F).

Example: Let $F=\mathbb{Q}$ and consider the \mathbb{Q}-algebra $(-1,-1, \mathbb{Q})$.

- Since $(-1,-1, \mathbb{Q}) \subsetneq(-1,-1, \mathbb{R})$, we see that $(-1,-1, \mathbb{Q})$ is a division algebra.
- As before we also see that $(1,1, \mathbb{Q}) \cong \mathrm{M}_{2}(\mathbb{Q})$.

Quaternion algebras and orders

Counting and effective rigidity

Lola

Thompson

Quaternion algebras and orders

Our Algebraic

Results
Geometric Background

Recall that if $F=\mathbb{R}$, then (a, b, F) is either a division algebra or it is isomorphic to $\mathrm{M}_{2}(\mathbb{R})$.

Theorem (Wedderburn)

For any field F, if the F-algebra (a, b, F) is not a division algebra then $(a, b, F) \cong \mathrm{M}_{2}(F)$.

Note that the case $F=\mathbb{R}$ is special - in general, there will not be a unique quaternion division algebra over F !

Quaternion algebras and orders

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Extension of scalars:

Let F be a field and F^{\prime} / F a field extension.

If A is a quaternion algebra over F then we can consider the quaternion algebra $A \otimes_{F} F^{\prime}$ over F^{\prime}.

Concretely, if $A=(a, b, F)$ then $A \otimes_{F} F^{\prime}=\left(a, b, F^{\prime}\right)$.

This is especially important in arithmetic applications.

Quaternion algebras and orders

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Our
Geometric Results

Counting and effective rigidity

Lola
Thompson

Reduced norm:

Let A be a quaternion algebra over a number field F.

Over the complex numbers, there is only one embedding $A \hookrightarrow \mathrm{M}_{2}(\mathbb{C})$.

The reduced norm of A is the composite map

$$
A \hookrightarrow \mathrm{M}_{2}(\mathbb{C}) \xrightarrow{\text { det }} \mathbb{C}
$$

For $A=\mathrm{M}_{2}(F)$ the reduced norm coincides with the determinant.

Quaternion algebras and orders

Counting and effective rigidity Lola Thompson

Quaternion algebras and orders

Let F be a number field with ring of integers \mathcal{O}_{F}.

An order of an F-algebra is a subring which is also a finitely generated \mathcal{O}_{F}-module containing an F-basis of the algebra.

Example 1: $\mathbb{Z}[i]$ is a quadratic order of the \mathbb{Q}-algebra $\mathbb{Q}(i)$.

Example 2: $\mathrm{M}_{2}(\mathbb{Z})$ is a maximal order of $\mathrm{M}_{2}(\mathbb{Q})$.

Example 3: $\mathcal{O}_{F}[i, j]$ is always an order of the F-algebra (a, b, F) when $a, b \in \mathcal{O}_{F}$.

Our Algebraic Results

```
Counting and
    effective
    rigidity
        Lola
        Thompson
Quaternion
algebras and
orders
Our Algebraic
Results
Geometric
Background
```


Our Algebraic Results

Counting Central Division Algebras

Counting and effective rigidity

Lola Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Our
Geometric Results

Let k be a number field and n a positive integer. We are interested in counting the number of central division algebras of dimension n^{2} over k which have (norm of) discriminant less than x.

For example, if $k=\mathbb{Q}$ and $n=2$, we are counting the number of rational quaternion algebras with discriminant less than x.

Our main tool in counting central division algebras will be the following Tauberian theorem of Delange.

Delange's Tauberian Theorem

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background

Our

Geometric Results

Theorem (Delange's Tauberian Theorem)

Let $G(s)=\sum \frac{a_{N}}{N^{s}}$ be a Dirichlet series satisfying:
(1) $a_{N} \geq 0$ for all N and $G(s)$ converges for $\mathfrak{R e}(s)>\rho$.
(2) $G(s)$ can be continued to an analytic function in the closed half-plane $\mathfrak{R e}(s) \geq \rho$ except possibly for a singularity at $s=\rho$.
(3) There is an open neighborhood of ρ and functions $A(s), B(s)$ analytic at $s=\rho$ with $G(s)=A(s) /(s-\rho)^{\beta}+B(s)$ at every point in this neighborhood having $\mathfrak{R e}(s)>\rho$.
Then as $x \rightarrow \infty$ we have

$$
\sum_{N \leq x} a_{N}=\left(\frac{A(\rho)}{\rho \Gamma(\beta)}+o(1)\right) x^{\rho} \log (x)^{\beta-1}
$$

Growth Rate of Division Algebras

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background Our Geometric Results

Theorem (Linowitz, McReynolds, Pollack, T.)
If $N(x)$ denotes the number of division algebras of dimension n^{2} over k with \mid disc $\mid<x$ and ℓ is the smallest prime divisor of n, then there is a constant $\delta_{n}>0$ so that

$$
N(x)=\left(\delta_{n}+o(1)\right) x^{\frac{1}{n^{2}(1-1 / \ell)}}(\log x)^{\ell-2},
$$

as $x \rightarrow \infty$.

Proof Sketch

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background Our Geometric Results

Main idea:

- Create a Dirichlet series whose coefficients count the central division algebras with fixed discriminant.

Proof Sketch

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background Our Geometric Results

Main idea:

- Create a Dirichlet series whose coefficients count the central division algebras with fixed discriminant.
- Apply Delange's Theorem in order to estimate the partial sums of these coefficients.

Growth Rate of Algebras with a Specified Subfield

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background Our
Geometric Results

Theorem (Linowitz, McReynolds, Pollack, T.)

Fix a number field k and a quaternion algebra B defined over k. The number of quadratic extensions L / k which embed into B and satisfy $\left|\Delta_{L / k}\right| \leq x$ is asymptotic to $c_{k, B} x$, as $x \rightarrow \infty$, where $c_{k, B}>0$. Moreover, if κ_{k} is the residue at $s=1$ of $\zeta_{k}(s), r_{2}$ is the number of pairs of complex embeddings of k, and r_{B} is the number of places of k (both finite and infinite) that ramify in B, then

$$
c_{k, B} \geq \frac{1}{2^{r_{B}+r_{2}}} \frac{\kappa_{k}}{\zeta_{k}(2)} .
$$

Proof Sketch

Counting and effective rigidity

Lola

Thompson

- Useful fact: If B / k is a quaternion algebra and L / k is a quadratic extension, then L embeds into B iff no prime of k that divides the discriminant of B splits in L / k.

Quaternion algebras and orders

Our Algebraic

Results
Geometric Background Our Geometric Results

Proof Sketch

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background

- Useful fact: If B / k is a quaternion algebra and L / k is a quadratic extension, then L embeds into B iff no prime of k that divides the discriminant of B splits in L / k.
- A result of Matchett Wood allows us to model the splitting of finitely many primes as mutually independent events over the class of random quadratic extensions of k.

Proof Sketch

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background

- Useful fact: If B / k is a quaternion algebra and L / k is a quadratic extension, then L embeds into B iff no prime of k that divides the discriminant of B splits in L / k.
- A result of Matchett Wood allows us to model the splitting of finitely many primes as mutually independent events over the class of random quadratic extensions of k.

- Use this along with the proof of the previous theorem.

Counting Quaternion Algebras

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric

 BackgroundOur
Geometric Results

A similar problem is to count the number of quaternion algebras over k which admit embeddings of specified quadratic extensions L_{1}, \ldots, L_{r} of k.

Theorem (Albert-Brauer-Hasse-Noether, 1931)

There is an embedding of L into A if and only if no prime \mathfrak{p} of K for which $A \otimes_{k} k_{\mathfrak{p}}$ is a division algebra splits in L / k.

Counting Quaternion Algebras

We will assume that $\left[L_{1} \cdots L_{r}: k\right]=2^{r}$. Without this assumption it is possible that no quaternion division algebra will admit embeddings of all of the L_{i}.

Example: Let $k=\mathbb{Q}$ and consider the collection of quadratic extensions $\mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{10}), \mathbb{Q}(\sqrt{17})$. Every finite prime of \mathbb{Q} splits in one of these extensions, so the discriminant of a quaternion algebra admitting embeddings of all of these extensions is divisible by no finite primes. The only such quaternion algebra is $M_{2}(\mathbb{Q})$, which is not a division algebra.

Counting Quaternion Algebras

Counting and effective rigidity

Lola Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background

Our
Geometric Results

The idea used to prove the previous theorems can be adapted to show:

Theorem (Linowitz, McReynolds, Pollack, T.)

Fix a number field k, and fix quadratic extensions
$L_{1}, L_{2}, \ldots, L_{r}$ of k. Let L be the compositum of the L_{i}, and suppose that $[L: k]=2^{r}$. The number of quaternion algebras over k with discriminant having norm less than x and which admit embeddings of all of the L_{i} is

$$
\sim \delta \cdot x^{1 / 2} /(\log x)^{1-\frac{1}{2^{r}}}
$$

as $x \rightarrow \infty$. Here δ is a positive constant depending only on the L_{i} and k.

Geometric Background

Counting and effective rigidity
\section*{Lola}
Thompson
Quaternion algebras and orders
Our Algebraic Results
\section*{Geometric} Background
\section*{Inverse} problems Hyperbolic surfaces Constructing arithmetic manifolds
Results for arithmetic, hyperbolic manifolds
\section*{Our}
Geometric Ressults

Geometric Background

Geometric Background

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Inverse

 problemsHyperbolic surfaces
Constructing arithmetic manifolds Results for arithmetic, hyperbolic manifolds

Let M be a compact Riemannian manifold.

The Laplace eigenvalue spectrum of M, denoted $\mathcal{E}(M)$, is the multiset of eigenvalues of the Laplacian of M.

The geodesic length spectrum, denoted $L S(M)$, is the multiset of lengths of closed geodesics on M with fundamental group $\pi_{1}(M)$.

Inverse spectral geometry asks for the extent to which the spectra of M determine its geometry and topology.

Geometric terminology

Definition

Two manifolds are commensurable if and only if they have a common finite degree covering space.

Quaternion algebras and orders

Our Algebraic Results

Geometric Background
Inverse problems Hyperbolic surfaces

Constructing

 arithmetic manifolds Results for arithmetic, hyperbolic manifolds
Our

Geometric Reshults 52 Hyperbolic

Counting and effective rigidity

Lola

Thompson
-

Definition

Two manifolds are isometric if there is an isometry between them.

Definition

M and N are isospectral if $\mathcal{E}(M)=\mathcal{E}(N)$, and length isospectral if $L S(M)=L S(N)$.

Inverse Problems

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Inverse

 problems Hyperbolic surfaces Constructing arithmetic manifolds Results for arithmetic, hyperbolic manifolds
Our

Geometric Reşultts 52

Some natural inverse problems:

- If $\mathrm{LS}(M)=\mathrm{LS}(N)$, is M isometric to N ?
- If $\operatorname{LS}(M)=\mathrm{LS}(N)$, are M and N commensurable?
- If $\operatorname{LS}(M)=\operatorname{LS}(N)$, what can be said about N ?

We can ask the same questions for $\mathcal{E}(M)$.

Can you hear the shape of a drum?

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background

Leon Green (1960) asked if the spectrum of M determines its isometry class.

The spectrum of M is essentially the collection of frequencies produced by a drumhead shaped like M.

Mark Kac (1966) popularized this question for planar domains:

Can you hear the shape of a drum?

Can you hear the shape of a drum?

Milnor had already shown that isometry class is not, in general, a spectral invariant.

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Inverse

 problems Hyperbolic surfaces Constructing arithmetic manifolds Results for arithmetic, hyperbolic manifoldsOur
Geometric Reşults 52

Theorem (Milnor, 1964)

There exist lattices $\Gamma_{1}, \Gamma_{2} \subset \mathbb{R}^{16}$ such that the tori $\mathbb{R}^{16} / \Gamma_{1}$ and $\mathbb{R}^{16} / \Gamma_{2}$ are isospectral but not isometric.

Can you hear the shape of a drum?

Kac's question was finally answered in 1992.

Quaternion algebras and orders

Our Algebraic Results

Geometric Background
Inverse problems Hyperbolic surfaces

Constructing

 arithmetic manifolds Results for arithmetic, hyperbolic manifoldsOur
Geometric Reşylts $/ 52$

Theorem (Gordon, Webb, Wolpert, 1992)

One cannot hear the shape of a drum.

Hyperbolic surfaces

Counting and effective rigidity

Lola Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Inverse

 problemsThe hyperbolic plane \mathbf{H}^{2} is a simply connected surface with constant curvature -1 and can be be modeled by the disc (Circle Limit IV, by M.C. Escher):

The symmetries of this diagram, mapping one angel to any other angel, form a group of isometries acting on \mathbf{H}^{2}.

Results for hyperbolic surfaces

Counting and effective rigidity

Lola Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background
Inverse problems Hyperbolic surfaces Constructing arithmetic manifolds Results for arithmetic, hyperbolic manifolds

Theorem (Vigneras, 1980)

There exist isospectral non-isometric hyperbolic 2- and 3-manifolds.

Vigneras' examples arise from orders in quaternion algebras!

Isospectral but non-isometric

Counting and effective rigidity
Lola
Thompson
Quaternion
algebras and
orders
Our Algebraic
Results
Geometric
Background
Inverse
problems
Hyperbolic surfaces
Constructing arithmetic manifolds Results for arithmetic, hyperbolic manifolds Our Geometric Reşults 52

A pair of isospectral but non-isometric hyperbolic 2-orbifolds (due to B. Linowitz and J. Voight).

Constructing arithmetic manifolds

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background
Inverse problems
Hyperbolic surfaces

Elementary results from geometric group theory:

- $\operatorname{Isom}^{+}\left(\mathbf{H}^{2}\right) \cong P S L_{2}(\mathbb{R})$.
- Every orientable hyperbolic 2-manifold is of the form \mathbf{H}^{2} / Γ for some discrete subgroup Γ of $P S L_{2}(\mathbb{R})$.

We want to generalize the following construction of $P S L_{2}(\mathbb{Z})$:

$$
M_{2}(\mathbb{Q}) \supset M_{2}(\mathbb{Z}) \longrightarrow S L_{2}(\mathbb{Z}) \longrightarrow P S L_{2}(\mathbb{Z})
$$

We can replace $M_{2}(\mathbb{Q})$ with a quaternion algebra over a number field and $M_{2}(\mathbb{Z})$ with a quaternion order. Manifolds that arise in this manner are called arithmetic manifolds.

Constructing arithmetic manifolds

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background
Inverse problems Hyperbolic surfaces

Let F be a totally real number field.

Let B / F be a quaternion algebra in which a unique real prime splits.

Let \mathcal{O} be a maximal order of B.

Consider the embedding $\rho: B \rightarrow M_{2}(\mathbb{R})$.

Restricting ρ to the group \mathcal{O}^{1} of elements of \mathcal{O} with reduced norm 1 and projecting onto $P S L_{2}(\mathbb{R})$ gives an embedding

$$
\bar{\rho}: \mathcal{O}^{1} \rightarrow P S L_{2}(\mathbb{R})
$$

Constructing arithmetic manifolds

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background
Inverse problems
Hyperbolic surfaces Constructing arithmetic manifolds
$\bar{\rho}\left(\mathcal{O}^{1}\right)$ is a discrete subgroup of isometries with finite covolume.

If B is a division algebra then $\bar{\rho}\left(\mathcal{O}^{1}\right)$ is cocompact.

If $\bar{\rho}\left(\mathcal{O}^{1}\right)$ is torsion-free then $\mathbf{H}^{2} / \bar{\rho}\left(\mathcal{O}^{1}\right)$ is a hyperbolic 2-manifold. (This amounts to saying that no cyclotomic field embeds into B.)

Hyperbolic surfaces commensurable with things of this form are defined to be arithmetic.

Results for arithmetic, hyperbolic surfaces

Counting and effective rigidity

Lola

Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background
Inverse problems Hyperbolic surfaces

Constructing

 arithmetic manifolds Results for arithmetic, hyperbolic manifolds
Our

Geometric Results

Theorem (Reid, 1992)

If M is an arithmetic, hyperbolic surface and $\mathrm{LS}(M)=\mathrm{LS}(N)$ then M and N are commensurable.

Lubotzky, Samuels and Vishne (2005) showed: if one considers the symmetric space of $\mathrm{PGL}_{n}(\mathbb{R})$ or $\mathrm{PGL}_{n}(\mathbb{C})$ then, for $n>3$, Reid's result is false and one can obtain arbitrarily large families of isospectral yet non-commensurable arithmetic manifolds.

Results for arithmetic, hyperbolic 3-manifolds

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background
Inverse problems
Hyperbolic surfaces

Constructing

 arithmetic manifolds Results for arithmetic, hyperbolic manifolds
Our

Geometric Results

In the context of hyperbolic 3-manifolds, Reid's result is due to Chinburg, Hamilton, Long and Reid.

Theorem (Chinburg, Hamilton, Long, Reid, 2008)

If M and N are arithmetic hyperbolic 3-manifolds and $\mathrm{LS}(M)=\mathrm{LS}(N)$ then M and N are commensurable.

The length spectrum of hyperbolic 3-manifolds

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic Results

Geometric Background
Inverse problems Hyperbolic surfaces Constructing arithmetic manifolds Results for arithmetic, hyperbolic manifolds

Theorem (Futer and Millichap, 2016)

For every sufficiently large $n>0$ there exists a pair of non-isometric finite-volume hyperbolic 3-manifolds $\left\{N_{n}, N_{n}^{\mu}\right\}$ such that:
(1) $\operatorname{vol}\left(N_{n}\right)=\operatorname{vol}\left(N_{n}^{\mu}\right)$, where this volume grows coarsely linearly with n.
(2) The (complex) length spectra of N_{n} and N_{n}^{μ} agree up to length n.
(3) N_{n} and N_{n}^{μ} have at least e^{n} / n closed geodesics up to length n.
(4) N_{n} and N_{n}^{μ} are not commensurable.

Our Geometric Results

Counting and effective rigidity

Lola Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Motivating Questions:

- Can we make Reid's result effective?
- How quickly does the number of commensurability classes of arithmetic, hyperbolic 2- or 3-manifolds grow?
- If the length spectra have a great deal of overlap, must the corresponding arithmetic, hyperbolic 2- or 3-manifolds be commensurable?

Effective Rigidity

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

To describe what we mean by effective rigidity some arithmetic facts will be useful.

Borel's finiteness result. For each $V \in \mathbb{R}_{\geq 0}$ there are only finitely many arithmetic hyperbolic 2 - or 3-manifolds of volume at most V.

A consequence of Borel's result is that there exists $\mathrm{L}(V) \in \mathbb{R}_{\geq 0}$ such that if M and N are arithmetic surfaces of area at most V and have the same geodesic lengths up to $\mathrm{L}(V)$ then M and N are commensurable. The same result holds for 3 -manifolds.

Effective Rigidity Results

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

The following are effective versions of Reid's "isospectral implies commensurable" result.

Theorem (Linowitz, McReynolds, Pollack, T.)

If M is an arithmetic hyperbolic surface then

$$
L(V) \leq c_{1} e^{c_{2} \log (V) V^{130}}
$$

for absolute, effectively computable constants c_{1} and c_{2}.

Theorem (Linowitz, McReynolds, Pollack, T.)

If M is an arithmetic hyperbolic 3-manifold then

$$
L(V) \leq c_{3} e^{\log (V)^{\log (V)}}
$$

Counting Arithmetic Manifolds

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Let M be an arithmetic hyperbolic surface with fundamental group $\Gamma<\mathrm{PSL}_{2}(\mathbb{R})$ and invariant trace field and quaternion algebra (K, B).

The closed geodesics

$$
c_{\gamma}: S^{1} \longrightarrow M
$$

on M are in bijection with the Γ-conjugacy classes $[\gamma]_{\Gamma}$ of hyperbolic elements γ in Γ.

The associated geodesic length $\ell\left(c_{\gamma}\right)$ is given by

$$
\cosh \left(\frac{\ell\left(c_{\gamma}\right)}{2}\right)= \pm \frac{\operatorname{Tr}(\gamma)}{2}
$$

Counting Arithmetic Manifolds

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

We denote by λ_{γ} the unique eigenvalue of γ with $\left|\lambda_{\gamma}\right|>1$.

Each closed geodesic c_{γ} determines a quadratic subfield K_{γ} of the quaternion algebra B. Specifically, $K_{\gamma}=K\left(\lambda_{\gamma}\right)$.

Class field theory shows that up to isomorphism, B is determined by its quadratic subfields.

This already proves Reid's theorem.

To prove our theorem we need to make this class field theory result effective and show that each subfield contributes a geodesic of bounded length.

Growth Rate of Commensurability Classes

Counting and effective rigidity

Lola
Thompson

Given a commensurability class \mathcal{C} of arithmetic hyperbolic 2 -manifolds, we define the volume $V_{\mathcal{C}}$ of \mathcal{C} to be the minimum volume achieved by its members.

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Growth Rate of Commensurability Classes

Counting and effective rigidity

Lola
Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Given a commensurability class \mathcal{C} of arithmetic hyperbolic 2-manifolds, we define the volume $V_{\mathcal{C}}$ of \mathcal{C} to be the minimum volume achieved by its members.

Theorem (Linowitz, McReynolds, Pollack, T.)

Let k be a totally real number field of degree n_{k} and let $N_{k}(V)$ denote the number of commensurability classes \mathcal{C} of compact arithmetic hyperbolic 2-manifolds arising from quaternion algebras over k with $V_{\mathcal{C}} \leq V$. Then for all sufficiently large V we have

$$
N_{k}(V) \ll \frac{\kappa 2^{n_{k}-1} V^{130}}{\zeta_{k}(2)}
$$

where $\zeta_{k}(s)$ is the Dedekind zeta function of k and κ is the residue of $\zeta_{k}(s)$ at $s=1$.

Counting Arithmetic Manifolds

Counting and effective rigidity

Lola

Thompson

Quaternion algebras and orders

Our Algebraic
Results
Geometric Background

Let $\pi(V, S)$ denote the maximum cardinality of a collection of pairwise non-commensurable arithmetic hyperbolic 2-orbifolds derived from quaternion algebras, each of which has volume less than V and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2014)

If $\pi(V, S) \rightarrow \infty$ as $V \rightarrow \infty$, then there are integers $1 \leq r, s \leq|S|$ and constants $c_{1}, c_{2}>0$ such that

$$
\frac{c_{1} V}{\log (V)^{1-\frac{1}{2^{T}}}} \leq \pi(V, S) \leq \frac{c_{2} V}{\log (V)^{1-\frac{1}{2^{s}}}}
$$

for all sufficiently large V.

Counting and effective rigidity
 Lola
 Thompson
 Quaternion algebras and orders
 Our Algebraic Results
 Geometric
 Thank you!

 Background
Our

 Geometric Results