On the degrees of divisors of $x^{n}-1$ Paul Pollack \& Lola
Thompson

On the degrees of divisors of $x^{n}-1$

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Paul Pollack \& Lola Thompson

University of Georgia

February 6, 2013

Introduction

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Definition

Let $\Phi_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial, which we define in the following manner:

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{t h} \text { root of } 1}}(x-\zeta)
$$

$\Phi_{n}(x)$ has the following properties:

- $\Phi_{n}(x) \in \mathbb{Z}[x]$

Introduction

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Definition

Let $\Phi_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial, which we define in the following manner:

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{t h} \text { root of } 1}}(x-\zeta)
$$

$\Phi_{n}(x)$ has the following properties:

- $\Phi_{n}(x) \in \mathbb{Z}[x]$
- monic

Introduction

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Definition

Let $\Phi_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial, which we define in the following manner:

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{t h} \text { root of } 1}}(x-\zeta)
$$

$\Phi_{n}(x)$ has the following properties:

- $\Phi_{n}(x) \in \mathbb{Z}[x]$
- monic
- irreducible

Introduction

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Definition

Let $\Phi_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial, which we define in the following manner:

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{t h} \text { root of } 1}}(x-\zeta)
$$

$\Phi_{n}(x)$ has the following properties:

- $\Phi_{n}(x) \in \mathbb{Z}[x]$
- monic
- irreducible
- $\operatorname{deg} \Phi_{n}(x)=\varphi(n)$

Introduction

> On the degrees of divisors of
> $x^{n}-1$

Paul Pollack \& Lola
Thompson
Moreover, we have the following identity:

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Introduction

> On the degrees of divisors of
> $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Moreover, we have the following identity:

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

In this talk, we will examine the degrees that occur for the (not necessarily irreducible) polynomial divisors of $x^{n}-1$.

Introduction

> On the degrees of divisors of $x^{n}-1$

Some natural questions:

Paul Pollack

 \& Lola ThompsonAt least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}
$8 / 82$

Introduction

On the degrees of divisors of $x^{n}-1$
Paul Pollack \& Lola
Thompson

Some natural questions:

- How often does $x^{n}-1$ have at least one divisor of each degree $1 \leq m \leq n$?

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Introduction

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m
Variants over \mathbb{F}_{p}

Some natural questions:

- How often does $x^{n}-1$ have at least one divisor of each degree $1 \leq m \leq n$?
- How often does $x^{n}-1$ have at most one divisor of each degree $1 \leq m \leq n$?

Introduction

On the degrees of divisors of
$x^{n}-1$
Paul Pollack
\& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Some natural questions:

- How often does $x^{n}-1$ have at least one divisor of each degree $1 \leq m \leq n$?
- How often does $x^{n}-1$ have at most one divisor of each degree $1 \leq m \leq n$?
- How often does $x^{n}-1$ have exactly one divisor of each degree $1 \leq m \leq n$?

Introduction

On the degrees of divisors of
$x^{n}-1$
Paul Pollack
\& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Some natural questions:

- How often does $x^{n}-1$ have at least one divisor of each degree $1 \leq m \leq n$?
- How often does $x^{n}-1$ have at most one divisor of each degree $1 \leq m \leq n$?
- How often does $x^{n}-1$ have exactly one divisor of each degree $1 \leq m \leq n$?
- For a given m, how often does $x^{n}-1$ have a divisor of degree m ?

On the degrees of divisors of
$$
x^{n}-1
$$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

...have at least one divisor of each degree?

How often does $x^{n}-1 \ldots$

$$
\begin{aligned}
& \text { On the } \\
& \text { degrees of } \\
& \text { divisors of } \\
& x^{n}-1
\end{aligned}
$$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

...have at least one divisor of each degree?

Example $n=6$

$$
x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)
$$

How often does $x^{n}-1 \ldots$

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

...have at least one divisor of each degree?

A divisor of degree m

Variants over \mathbb{F}_{p}

Example $n=6$
$x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$

How often does $x^{n}-1 \ldots$

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

...have at least one divisor of each degree?

A divisor of degree m

Variants over \mathbb{F}_{p}

Example $n=6$
$x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$

How often does $x^{n}-1 \ldots$

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

...have at least one divisor of each degree?

A divisor of degree m

Variants over \mathbb{F}_{p}

Example $n=6$
$x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$

How often does $x^{n}-1 \ldots$

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

...have at least one divisor of each degree?

A divisor of degree m

Variants over \mathbb{F}_{p}

Example $n=6$
$x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$

How often does $x^{n}-1 \ldots$

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

...have at least one divisor of each degree?

A divisor of degree m

Variants over \mathbb{F}_{p}

Example $n=6$
$x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$

How often does $x^{n}-1 \ldots$

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

...have at least one divisor of each degree?

A divisor of degree m

Variants over \mathbb{F}_{p}

Example $n=6$
$x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$

How often does $x^{n}-1 \ldots$

> On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola
Thompson

...have at least one divisor of each degree?

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over

 \mathbb{F}_{p}Example $n=6$
$x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$
So, $x^{6}-1$ has ≥ 1 divisor of each degree.

When does $x^{n}-1$ have ≥ 1 divisor of each degree?

On the degrees of divisors of $x^{n}-1$
Paul Pollack \& Lola Thompson
\section*{At least one} divisor of each degree
At most one divisor of each degree
Exactly one divisor of each degree
A divisor of degree m
Variants over

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Table : Values of $n \leq 100$ with this property

A related problem

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Definition
A positive integer n is practical if every m with $1 \leq m \leq n$ can be written as a sum of distinct divisors of n.

Example. $n=6$
Divisors: 1, 2, 3, 6
Sums:
$\left.\begin{array}{r}1 \\ 2 \\ 3 \\ 3+1 \\ 3+2 \\ 6\end{array}\right\}$
On the degrees of divisors of $x^{n}-1$

Practical numbers

On the degrees of divisors of $x^{n}-1$ Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Srinivasan coined the term 'practical number' in 1948. He attempted to classify them, remarking that

The revelation of the structure of these numbers is bound to open some good research in the theory of numbers... Our table shows that about 25 per cent of the first 200 natural numbers are 'practical.' It is a matter for investigation what percentage of the natural numbers will be 'practical' in the long run.

Practical numbers

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

It was not long before Srinivasan's questions were answered.

In a 1950 paper, P. Erdős asserted (without proof) that the practical numbers have asymptotic density 0 .

Practical numbers

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Saias, 1997)

There exist two constants C_{1} and C_{2} such that
where $P R(X)=\#\{n \leq X: n$ is practical $\}$.

Practical vs. \mathbb{Q}-Practical

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Definition

A positive integer n is \mathbb{Q}-practical if every m with $1 \leq m \leq n$ can be written as $\sum_{d \in \mathcal{D}} \varphi(d)$, where \mathcal{D} is a subset of divisors of n.

Note: This is equivalent to the condition that $x^{n}-1$ has a divisor of every degree between 1 and n.

Q-practical example

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Example. $n=6$
Divisors: 1, 2, 3, 6
φ values: $1,1,2,2$
Sums of φ values:
$\therefore 6$ is \mathbb{Q}-practical
$1+2$
$2+2$
$1+2+2$
$1+1+2+2$)

Counting the number of \mathbb{Q}-practicals

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree A divisor of degree m

Variants over \mathbb{F}_{p}

We can prove the following analogue of Saias' result for the \mathbb{Q}-practical numbers:

Theorem (T.)

There exist two positive constants c_{1} and c_{2} such that

$$
c_{1} \frac{X}{\log X} \leq F(X) \leq c_{2} \frac{X}{\log X},
$$

where $F(X)=\#\{n \leq X: n$ is \mathbb{Q}-practical $\}$.

Proof of the upper bound

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Stewart)

Let $n=p_{1}^{e_{1}} \cdots p_{j}^{e_{j}}, n>1$, with $p_{1}<p_{2}<\cdots<p_{j}$ prime and $e_{i} \geq 1$ for $i=1, \ldots, j$. Then n is practical iff for all $i=1, \ldots, j$, $p_{i} \leq \sigma\left(p_{1}^{e_{1}} \cdots p_{i-1}^{e_{i-1}}\right)+1$.

Unfortunately, there's no simple method for building up \mathbb{Q}-practical numbers from smaller ones.

Example $3^{2} \times 5 \times 17 \times 257 \times 65537 \times\left(2^{31}-1\right)$ is \mathbb{Q}-practical, but none of the numbers $3^{2}, 3^{2} \times 5,3^{2} \times 5 \times 17$, $3^{2} \times 5 \times 17 \times 257,3^{2} \times 5 \times 17 \times 257 \times 65537$ are \mathbb{Q}-practical.

Proof of the upper bound

On the degrees of divisors of $x^{n}-1$ Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Instead, we devise the following workaround:

Definition

Let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$. Let $m_{i}=p_{1}^{e_{1}} \cdots p_{i}^{e_{i}}$. We define an integer n to be weakly \mathbb{Q}-practical if the inequality $p_{i+1} \leq m_{i}+2$ holds for all i.

Lemma

Every \mathbb{Q}-practical number is weakly \mathbb{Q}-practical.

Note: The converse does not hold. For example, 45 is not \mathbb{Q}-practical but it is weakly \mathbb{Q}-practical.

Proof of the upper bound

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

To prove our theorem, we consider two cases:

- If n is even \& \mathbb{Q}-practical then $p_{i+1} \leq m_{i}+2 \leq \sigma\left(m_{i}\right)+1$ for all $i \geq 1$. Hence, each m_{i} satisfies the inequality in Stewart's Condition, so n is practical.

Proof of the upper bound

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

To prove our theorem, we consider two cases:

- If n is even \& \mathbb{Q}-practical then $p_{i+1} \leq m_{i}+2 \leq \sigma\left(m_{i}\right)+1$ for all $i \geq 1$. Hence, each m_{i} satisfies the inequality in Stewart's Condition, so n is practical.
- On the other hand, observe that for every $n \in(0, X]$, there is a unique k such that $2^{k} n \in(X, 2 X]$. Then, if n is odd $\& \mathbb{Q}$-practical, $2^{k} n$ will be practical.

Proof of the upper bound

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

To prove our theorem, we consider two cases:

- If n is even \& \mathbb{Q}-practical then $p_{i+1} \leq m_{i}+2 \leq \sigma\left(m_{i}\right)+1$ for all $i \geq 1$. Hence, each m_{i} satisfies the inequality in Stewart's Condition, so n is practical.
- On the other hand, observe that for every $n \in(0, X]$, there is a unique k such that $2^{k} n \in(X, 2 X]$. Then, if n is odd $\& \mathbb{Q}$-practical, $2^{k} n$ will be practical.
- Thus, $F(X) \leq P R(2 X) \ll \frac{X}{\log X}$, by Saias' Theorem.

Lower Bound Proof Sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree A divisor of degree m

Variants over \mathbb{F}_{p}

Saias obtains his lower bound by comparing the set of practical numbers with the set of integers with 2-dense divisors:

Definition

An integer n is 2-dense if $\max _{1 \leq i \leq \tau(n)-1} \frac{d_{i+1}(n)}{d_{i}(n)} \leq 2$.

Note: All integers with 2-dense divisors are practical, but the same cannot be said about the \mathbb{Q}-practical numbers. For example, $n=66$ is 2 -dense but it is not \mathbb{Q}-practical.

Lower Bound Proof Sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree A divisor of degree m

Variants over \mathbb{F}_{p}

We obtain our lower bound by comparing the set of \mathbb{Q}-practical numbers with the set of integers with strictly 2 -dense divisors:

Definition

An integer n is strictly 2 -dense if $\max _{1<i<\tau(n)-1} \frac{d_{i+1}(n)}{d_{i}(n)}<2$ and $\frac{d_{2}(n)}{d_{1}(n)}=2=\frac{d_{\tau(n)}(n)}{d_{\tau(n)-1}(n)}$

It turns out that all strictly 2-dense integers are \mathbb{Q}-practical.

Lower Bound Proof Sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- The main idea behind the proof is to show that a positive proportion of 2 -dense integers are strictly 2 -dense, except for some possible obstructions at small primes.

Lower Bound Proof Sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- The main idea behind the proof is to show that a positive proportion of 2 -dense integers are strictly 2 -dense, except for some possible obstructions at small primes.
- To do this, first we find an upper bound for the number of integers up to X that are 2-dense but not strictly 2-dense:

Lower Bound Proof Sketch

I 785

On the degrees of divisors of $x^{n}-1$

Paul Pollack
\& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- The main idea behind the proof is to show that a positive proportion of 2 -dense integers are strictly 2 -dense, except for some possible obstructions at small primes.
- To do this, first we find an upper bound for the number of integers up to X that are 2-dense but not strictly 2-dense:

$$
\begin{equation*}
\sum_{k>C} \sum_{\substack{m \in\left(2^{k-1}, 2^{k}\right) \\ m \text { 2-dense }}} \sum_{\substack{p \in\left(2^{k-1}, 2^{k+1}\right) \\ p \text { prime }}} \sum_{\substack{j \leq X / m p \\ m p j \\ P^{-}(j)>p}} 1 . \tag{1}
\end{equation*}
$$

- Using sieve methods developed by Saias and Tenenbaum, along with Brun's sieve and other classical techniques from multiplicative number theory, we can show that the number counted in (1) is $\leq \varepsilon \frac{X}{\log X}$.

Lower Bound Proof Sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- The final step is to show that a subset of the strictly 2-dense integers is in one-to-one correspondence with a positive proportion of the 2 -dense integers with obstructions at $k<C$.

Corollary (T.)

For X sufficiently large, we have

$$
\#\{n \leq X: n \text { is practical but not } \mathbb{Q} \text {-practical }\} \gg \frac{X}{\log X}
$$

Moreover, we also have

$$
\#\{n \leq X: n \text { is } \mathbb{Q} \text {-practical but not practical }\} \gg \frac{X}{\log X} .
$$

Comparison with the prime numbers

On the degrees of divisors of $x^{n}-1$ Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Chebyshev, 1852)

Let $\pi(X)=\#$ of primes in $[1, X]$. There exist positive constants C_{1} and C_{2} such that

$$
C_{1} \frac{X}{\log X} \leq \pi(X) \leq C_{2} \frac{X}{\log X} .
$$

Comparison with the prime numbers

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Hadamard \& de la Valée Poussin, 1896)

Let $\pi(X)=\#$ of primes in $[1, X]$. Then, we have

$$
\lim _{X \rightarrow \infty} \frac{\pi(X)}{X / \log X}=1
$$

An asymptotic estimate for the \mathbb{Q}-practicals?

On the degrees of divisors of $x^{n}-1$ Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

We can use Sage to compute $F(X) / \frac{X}{\log X}$:

X	$F(X) /(X / \log X)$
10^{2}	1.28944765207667
10^{3}	1.20194941854289
10^{4}	1.10339877656275
10^{5}	1.07081719749688
10^{6}	1.02871673165658
10^{7}	1.02435010928622
10^{8}	1.01792184432701
10^{9}	1.00271691479998

Table : Ratios for \mathbb{Q}-practicals

Estimating the constants C_{1} and C_{2}

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

The data seem to suggest:

$$
\lim _{X \rightarrow \infty} \frac{F(X)}{X / \log X}=1
$$

The Bad News:

The Good News:

Paul Pollack \& Lola Thompson
On the degrees of divisors of $x^{n}-1$

Estimating the constants C_{1} and C_{2}

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

The data seem to suggest:

$$
\lim _{X \rightarrow \infty} \frac{F(X)}{X / \log X}=1
$$

The Bad News: No one has been able to show that

$$
\lim _{X \rightarrow \infty} \frac{P R(X)}{X / \log X}
$$

even exists!

The Good News:

Estimating the constants C_{1} and C_{2}

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

The data seem to suggest:

$$
\lim _{X \rightarrow \infty} \frac{F(X)}{X / \log X}=1
$$

The Bad News: No one has been able to show that

$$
\lim _{X \rightarrow \infty} \frac{P R(X)}{X / \log X}
$$

even exists!

The Good News: We still have $43 \frac{1}{2}$ years to catch up with Hadamard and de la Valée Poussin!

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

...have at most one divisor of each degree?

A natural dual to the notion of \mathbb{Q}-practical:

Definition

A positive integer n is \mathbb{Q}-efficient if $x^{n}-1$ has at most one monic divisor in $\mathbb{Q}[x]$ of each degree $m \in[1, n]$.

Example: 255 is \mathbb{Q}-efficient since the totients of its divisors are: $1,2,4,8,16,32,64,128$.

On the degrees of divisors of $x^{n}-1$

When does $x^{n}-1$ have ≤ 1 divisor of each degree?

On the degrees of divisors of $x^{n}-1$
Paul Pollack \& Lola Thompson
At least one divisor of each degree
At most one divisor of each degree
Exactly one divisor of each degree
A divisor of degree m
Variants over

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Table : ©-efficient values of $n \leq 100$

Q-efficient

On the degrees of divisors of $x^{n}-1$ Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Pollack, T.)

The set of \mathbb{Q}-efficient numbers has positive asymptotic density.

On the degrees of divisors of $x^{n}-1$ Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

...have exactly one divisor of each degree?

$\mathbf{1}$	2	$\mathbf{3}$	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Table : \mathbb{Q}-practical and \mathbb{Q}-efficient $n \leq 100$

Exactly 1 divisor of each degree

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Pollack, T.)

There are precisely six integers that are both \mathbb{Q}-practical and \mathbb{Q}-efficient, namely $2^{2^{i}}-1$ for $i=0, \ldots, 5$.

Proof Sketch

Exactly 1 divisor of each degree

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over

 \mathbb{F}_{p}
Theorem (Pollack, T.)

There are precisely six integers that are both \mathbb{Q}-practical and \mathbb{Q}-efficient, namely $2^{2^{i}}-1$ for $i=0, \ldots, 5$.

Proof Sketch

Let $F_{m}:=2^{2^{m}}+1$ represent the $m^{\text {th }}$ Fermat number.

Exactly 1 divisor of each degree

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Pollack, T.)

There are precisely six integers that are both \mathbb{Q}-practical and \mathbb{Q}-efficient, namely $2^{2^{i}}-1$ for $i=0, \ldots, 5$.

Proof Sketch

Let $F_{m}:=2^{2^{m}}+1$ represent the $m^{\text {th }}$ Fermat number. One can show that $x^{n}-1$ has exactly one divisor of each degree iff each $\varphi(d)$ represents a distinct power of 2 .

Exactly 1 divisor of each degree

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Pollack, T.)

There are precisely six integers that are both \mathbb{Q}-practical and \mathbb{Q}-efficient, namely $2^{2^{i}}-1$ for $i=0, \ldots, 5$.

Proof Sketch

Let $F_{m}:=2^{2^{m}}+1$ represent the $m^{\text {th }}$ Fermat number. One can show that $x^{n}-1$ has exactly one divisor of each degree iff each $\varphi(d)$ represents a distinct power of 2 . It is well-known that if p is an odd prime for which $p-1$ is a power of 2 , then $p=F_{m}$ for some m.

Exactly 1 divisor of each degree

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Pollack, T.)

There are precisely six integers that are both \mathbb{Q}-practical and \mathbb{Q}-efficient, namely $2^{2^{i}}-1$ for $i=0, \ldots, 5$.

Proof Sketch

Let $F_{m}:=2^{2^{m}}+1$ represent the $m^{\text {th }}$ Fermat number. One can show that $x^{n}-1$ has exactly one divisor of each degree iff each $\varphi(d)$ represents a distinct power of 2 . It is well-known that if p is an odd prime for which $p-1$ is a power of 2 , then $p=F_{m}$ for some m. Thus, the integers n that are both \mathbb{Q}-practical and \mathbb{Q}-efficient are precisely those which are expressible as products of consecutive Fermat primes.

Exactly 1 divisor of each degree

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Pollack, T.)

There are precisely six integers that are both \mathbb{Q}-practical and \mathbb{Q}-efficient, namely $2^{2^{i}}-1$ for $i=0, \ldots, 5$.

Proof Sketch

Let $F_{m}:=2^{2^{m}}+1$ represent the $m^{\text {th }}$ Fermat number. One can show that $x^{n}-1$ has exactly one divisor of each degree iff each $\varphi(d)$ represents a distinct power of 2 . It is well-known that if p is an odd prime for which $p-1$ is a power of 2 , then $p=F_{m}$ for some m. Thus, the integers n that are both \mathbb{Q}-practical and \mathbb{Q}-efficient are precisely those which are expressible as products of consecutive Fermat primes. But F_{5} is not prime!

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}
...have a divisor of degree m ?

Theorem (Pollack, T.)

Let $\delta:=1-\frac{1+\log \log 2}{\log 2} \approx 0.0860713$. Fix a value δ^{\prime} with $0<\delta^{\prime}<\delta$. If $3 \leq m \leq X$, we have

$$
\#\left\{n \leq X: x^{n}-1 \text { has a divisor of degree } m\right\} \ll \frac{X}{(\log m)^{\delta^{\prime}}} \text {. }
$$

A theorem of Ford

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Ford)

Let $H(X, Y, Z)$ represent the count of $n \leq X$ possessing a divisor from the interval $(Y, Z]$. Write $Z=Y^{1+u}$. For X, Y sufficiently large with $2 Y \leq Z \leq Y^{2} \leq X$, we have

$$
H(X, Y, Z) \asymp X u^{\delta}\left(\log \frac{2}{u}\right)^{-3 / 2}
$$

Proof sketch

On the degrees of divisors of $x^{n}-1$
Paul Pollack \& Lola
Thompson

If $x^{n}-1$ has a divisor of degree m, then we can write $m=\sum_{d \in \mathcal{D}} \varphi(d)$ where \mathcal{D} is some subset of divisors of n.

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Proof sketch

On the degrees of divisors of $x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

If $x^{n}-1$ has a divisor of degree m, then we can write $m=\sum_{d \in \mathcal{D}} \varphi(d)$ where \mathcal{D} is some subset of divisors of n. Moreover, there must be some d for which $\varphi(d)$ is larger than average, and so $\varphi(d) \geq \frac{m}{\#\{d: d \mid n, d \leq m\}}$.

Proof sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

If $x^{n}-1$ has a divisor of degree m, then we can write $m=\sum_{d \in \mathcal{D}} \varphi(d)$ where \mathcal{D} is some subset of divisors of n. Moreover, there must be some d for which $\varphi(d)$ is larger than average, and so $\varphi(d) \geq \frac{m}{\#\{d: d \mid n, d \leq m\}}$. The count in the denominator is typically around $\log m$.

Proof sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

If $x^{n}-1$ has a divisor of degree m, then we can write $m=\sum_{d \in \mathcal{D}} \varphi(d)$ where \mathcal{D} is some subset of divisors of n. Moreover, there must be some d for which $\varphi(d)$ is larger than average, and so $\varphi(d) \geq \frac{m}{\#\{d: d \mid n, d \leq m\}}$. The count in the denominator is typically around $\log m$. But $\varphi(d) \leq m$ and $\varphi(d)$ is not too different from d.

Proof sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack
\& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

If $x^{n}-1$ has a divisor of degree m, then we can write $m=\sum_{d \in \mathcal{D}} \varphi(d)$ where \mathcal{D} is some subset of divisors of n. Moreover, there must be some d for which $\varphi(d)$ is larger than average, and so $\varphi(d) \geq \frac{m}{\#\{d: d \mid n, d \leq m\}}$. The count in the denominator is typically around $\log m$. But $\varphi(d) \leq m$ and $\varphi(d)$ is not too different from d. So, solving this problem roughly amounts to knowing how often an integer n has a divisor $d \in\left(\frac{m}{\log m}, m\right)$, which is where Ford's theorem is useful.

Switching gears...

$$
\begin{gathered}
\text { On the } \\
\text { degrees of } \\
\text { divisors of } \\
x^{n}-1
\end{gathered}
$$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

How do these results change...

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}
...if we factor $x^{n}-1$ in $\mathbb{F}_{p}[x]$?

Definition

We say that an integer n is \mathbb{F}_{p}-practical if $x^{n}-1$ has a divisor of every degree between 1 and n in $\mathbb{F}_{p}[x]$.

Notation:

For each rational prime p, let

$$
F_{p}(X)=\#\left\{n \leq X: n \text { is } \mathbb{F}_{p} \text {-practical }\right\}
$$

Counting the \mathbb{F}_{p}-practicals up to X

On the degrees of divisors of $x^{n}-1$ Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of
degree m
Variants over \mathbb{F}_{p}

Computations in Sage yield the following table of ratios:

X	$F_{2}(X) /(X / \log X)$
10^{2}	1.56575786323595
10^{3}	1.67858453279266
10^{4}	1.64865092658374
10^{5}	1.69274543111457
10^{6}	1.66167434786971
10^{7}	1.66061354691737

Table : Ratios for \mathbb{F}_{2}-practicals

Overarching Goal

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola Thompson

Our computational results seem to suggest the following conjecture:

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Conjecture

Let p be a rational prime. Then, for X sufficiently large, we have

$$
F_{p}(X) \ll \frac{X}{\log X} .
$$

Density 0 argument

On the degrees of divisors of
$x^{n}-1$
Paul Pollack \& Lola Thompson

We'll sketch a proof of the following (weaker) theorem:

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (T.)

Let p be a prime number. Assuming that the Generalized Riemann Hypothesis holds, we have $F_{p}(X)=o(X)$ as $X \rightarrow \infty$.

Proof sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Let $\ell_{p}(d)$ denote the multiplicative order of $p(\bmod d)$.

- We show that, when n has the "normal" number of prime factors, there exists an index j for which

$$
1+\sum_{i \leq j} \ell_{p}\left(d_{i}\right) \frac{\varphi\left(d_{i}\right)}{\ell_{p}\left(d_{i}\right)}<\ell_{p}\left(d_{j+k}\right)
$$

holds for all $k \geq 1$. Thus, such an n cannot be \mathbb{F}_{p}-practical.

Proof sketch

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Let $\ell_{p}(d)$ denote the multiplicative order of $p(\bmod d)$.

- We show that, when n has the "normal" number of prime factors, there exists an index j for which

$$
1+\sum_{i \leq j} \ell_{p}\left(d_{i}\right) \frac{\varphi\left(d_{i}\right)}{\ell_{p}\left(d_{i}\right)}<\ell_{p}\left(d_{j+k}\right)
$$

holds for all $k \geq 1$. Thus, such an n cannot be \mathbb{F}_{p}-practical.

- Since the set of n having many more (or many fewer) than the normal number of prime factors has asymptotic density 0 , then the \mathbb{F}_{p}-practicals must lie within a set with asymptotic density 0 .

Key Lemmas

On the degrees of divisors of $x^{n}-1$

Recall that $\Omega(n)$ has normal order $\log \log n$.

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree A divisor of degree m

Variants over \mathbb{F}_{p}

Lemma

Let n be a positive integer. Fix $\varepsilon=1 / 1000$. If n is in the set with asymptotic density 1 for which

$$
(1-\varepsilon) \log \log n \leq \Omega(n) \leq(1+\varepsilon) \log \log n,
$$

then there exists an integer j such that

$$
\frac{d_{j+1}}{d_{j}}>e^{(\log n)^{0.3}}
$$

Key Lemmas

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Lemma (Friedlander, Pomerance, Shparlinski)

Let n and d be positive integers with $d \mid n$. Then $\frac{d}{\ell_{p}(d)} \leq \frac{n}{\ell_{p}(n)}$.

Lemma (Li, Pomerance)

Under the GRH, for any fixed integer $a>1$, the number of positive integers $n \leq X$ coprime to a with $\ell_{a}(n) \leq \frac{X}{(\log X)^{2 \log _{3} X}}$ is $o(X)$.

Main argument

> On the degrees of divisors of $x^{n}-1$

- Let n be a positive integer with divisors $d_{1}<d_{2}<\cdots<d_{\tau(n)}$.

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Paul Pollack \& Lola
Thompson

Main argument

On the degrees of divisors of $x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- Let n be a positive integer with divisors $d_{1}<d_{2}<\cdots<d_{\tau(n)}$.
- Suppose that n has the normal number of prime factors.

Main argument

On the degrees of divisors of $x^{n}-1$
Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- Let n be a positive integer with divisors $d_{1}<d_{2}<\cdots<d_{\tau(n)}$.
- Suppose that n has the normal number of prime factors.
- Furthermore, let p be a rational prime with $p \nmid n$.

Main argument

> On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- Let n be a positive integer with divisors

$$
d_{1}<d_{2}<\cdots<d_{\tau(n)} .
$$

- Suppose that n has the normal number of prime factors.
- Furthermore, let p be a rational prime with $p \nmid n$.
- On one hand, we have

$$
1+\sum_{i \leq j} \ell_{p}\left(d_{i}\right) \frac{\varphi\left(d_{i}\right)}{\ell_{p}\left(d_{i}\right)}=1+\sum_{i \leq j} \varphi\left(d_{i}\right) \leq j d_{j} \leq d_{j} \log n
$$

Main argument

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- On the other hand, by Li and Pomerance's lemma, we may assume that $\ell_{p}(n)>\frac{n}{(\log n)^{2 \log _{3} n}}$.

Main argument

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

- On the other hand, by Li and Pomerance's lemma, we may assume that $\ell_{p}(n)>\frac{n}{(\log n)^{2 \log _{3} n}}$.
- As a result, for all $k \geq 1$, we have

$$
\ell_{p}\left(d_{j+k}\right)>\frac{d_{j+k}}{(\log n)^{2 \log _{3} n}} \geq d_{j} \frac{e^{(\log n)^{0.3}}}{(\log n)^{2 \log _{3} n}} \geq d_{j} \log n
$$

where the first two inequalities follow from the remaining lemmas.

Main argument

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree
A divisor of degree m

Variants over \mathbb{F}_{p}

- On the other hand, by Li and Pomerance's lemma, we may assume that $\ell_{p}(n)>\frac{n}{(\log n)^{2 \log _{3} n}}$.
- As a result, for all $k \geq 1$, we have

$$
\ell_{p}\left(d_{j+k}\right)>\frac{d_{j+k}}{(\log n)^{2 \log _{3} n}} \geq d_{j} \frac{e^{(\log n)^{0.3}}}{(\log n)^{2 \log _{3} n}} \geq d_{j} \log n
$$

where the first two inequalities follow from the remaining lemmas.

- Therefore, we have $1+\sum_{i \leq j} \ell_{p}\left(d_{i}\right) \frac{\varphi\left(d_{i}\right)}{\ell_{p}\left(d_{i}\right)}<\ell_{p}\left(d_{j+k}\right)$ holds for all $k \geq 1$.

What we can show...

On the degrees of divisors of
$x^{n}-1$
Paul Pollack
\& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (T.)

Assuming GRH, for each prime p, we have

$$
F_{p}(X) \ll X \sqrt{\frac{\log \log X}{\log X}}
$$

A divisor of degree m ?

On the degrees of divisors of
$x^{n}-1$
Paul Pollack
\& Lola
Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Theorem (Pollack, T.)

Assuming GRH, if $3 \leq m \leq X$, then the number of $n \leq X$ for which $x^{n}-1$ has a divisor of degree m in $\mathbb{F}_{p}[x]$ is

$$
<_{p} \frac{X}{(\log m)^{2 / 35}} .
$$

On the degrees of divisors of $x^{n}-1$

Paul Pollack \& Lola Thompson

At least one divisor of each degree

At most one divisor of each degree

Exactly one divisor of each degree

A divisor of degree m

Variants over \mathbb{F}_{p}

Thank you!

