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Introduction

Definition

Let Φn(x) denote the nth cyclotomic polynomial, which we
define in the following manner:

Φn(x) =
∏

ζ primitive
nth root of 1

(x− ζ).

Φn(x) has the following properties:

Φn(x) ∈ Z[x]

monic

irreducible

deg Φn(x) = ϕ(n)

2 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Introduction

Definition

Let Φn(x) denote the nth cyclotomic polynomial, which we
define in the following manner:

Φn(x) =
∏

ζ primitive
nth root of 1

(x− ζ).

Φn(x) has the following properties:

Φn(x) ∈ Z[x]

monic

irreducible

deg Φn(x) = ϕ(n)

3 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Introduction

Definition

Let Φn(x) denote the nth cyclotomic polynomial, which we
define in the following manner:

Φn(x) =
∏

ζ primitive
nth root of 1

(x− ζ).

Φn(x) has the following properties:

Φn(x) ∈ Z[x]

monic

irreducible

deg Φn(x) = ϕ(n)

4 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Introduction

Definition

Let Φn(x) denote the nth cyclotomic polynomial, which we
define in the following manner:

Φn(x) =
∏

ζ primitive
nth root of 1

(x− ζ).

Φn(x) has the following properties:

Φn(x) ∈ Z[x]

monic

irreducible

deg Φn(x) = ϕ(n)
5 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Introduction

Moreover, we have the following identity:

xn − 1 =
∏
d|n

Φd(x)

In this talk, we will examine the degrees that occur for the (not
necessarily irreducible) polynomial divisors of xn − 1.
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Introduction

Some natural questions:

How often does xn − 1 have at least one divisor of each
degree 1 ≤ m ≤ n?

How often does xn − 1 have at most one divisor of each
degree 1 ≤ m ≤ n?

How often does xn − 1 have exactly one divisor of each
degree 1 ≤ m ≤ n?

For a given m, how often does xn − 1 have a divisor of
degree m?
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How often does xn − 1...

...have at least one divisor of each degree?

Example n = 6
x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1)
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How often does xn − 1...

...have at least one divisor of each degree?

Example n = 6
x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1)

So, x6 − 1 has ≥ 1 divisor of each degree.
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When does xn− 1 have ≥ 1 divisor of each degree?

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Table : Values of n ≤ 100 with this property

22 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

A related problem

Definition

A positive integer n is practical if every m with 1 ≤ m ≤ n
can be written as a sum of distinct divisors of n.

Example. n = 6

Divisors: 1, 2, 3, 6

Sums:

1

2

3

3 + 1

3 + 2

6


∴ 6 is practical
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Practical numbers

Srinivasan coined the term ‘practical number’ in 1948. He
attempted to classify them, remarking that

The revelation of the structure of these numbers is
bound to open some good research in the theory of
numbers... Our table shows that about 25 per cent of
the first 200 natural numbers are ‘practical.’ It is a
matter for investigation what percentage of the
natural numbers will be ‘practical’ in the long run.24 / 82
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Practical numbers

It was not long before Srinivasan’s questions were answered.

In a 1950 paper, P. Erdős asserted (without proof) that the
practical numbers have asymptotic density 0.
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Practical numbers

Theorem (Saias, 1997)

There exist two constants C1 and C2 such that

C1
X

logX
≤ PR(X) ≤ C2

X

logX
,

where PR(X) = #{n ≤ X : n is practical}.
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Practical vs. Q-Practical

Definition

A positive integer n is Q-practical if every m with 1 ≤ m ≤ n
can be written as

∑
d∈D ϕ(d), where D is a subset of divisors

of n.

Note: This is equivalent to the condition that xn − 1 has a
divisor of every degree between 1 and n.
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Q-practical example

Example. n = 6

Divisors: 1, 2, 3, 6

ϕ values: 1, 1, 2, 2

Sums of ϕ values:

1

2

1 + 2

2 + 2

1 + 2 + 2

1 + 1 + 2 + 2



∴ 6 is Q-practical
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Counting the number of Q-practicals

We can prove the following analogue of Saias’ result for the
Q-practical numbers:

Theorem (T.)

There exist two positive constants c1 and c2 such that

c1
X

logX
≤ F (X) ≤ c2

X

logX
,

where F (X) = #{n ≤ X : n is Q-practical}.
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Proof of the upper bound

The proofs of Saias et al. relied heavily on the following:

Theorem (Stewart)

Let n = pe11 · · · p
ej
j , n > 1, with p1 < p2 < · · · < pj prime and

ei ≥ 1 for i = 1, ..., j. Then n is practical iff for all i = 1, ..., j,
pi ≤ σ(pe11 · · · p

ei−1

i−1 ) + 1.

Unfortunately, there’s no simple method for building up
Q-practical numbers from smaller ones.

Example 32 × 5× 17× 257× 65537× (231 − 1) is Q-practical,
but none of the numbers 32, 32 × 5, 32 × 5× 17,
32 × 5× 17× 257, 32 × 5× 17× 257× 65537 are Q-practical.
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Proof of the upper bound

Instead, we devise the following workaround:

Definition

Let n = pe11 · · · p
ek
k . Let mi = pe11 · · · p

ei
i . We define an integer

n to be weakly Q-practical if the inequality pi+1 ≤ mi + 2
holds for all i.

Lemma

Every Q-practical number is weakly Q-practical.

Note: The converse does not hold. For example, 45 is not
Q-practical but it is weakly Q-practical.
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Proof of the upper bound

To prove our theorem, we consider two cases:

If n is even & Q-practical then pi+1 ≤ mi+ 2 ≤ σ(mi) + 1
for all i ≥ 1. Hence, each mi satisfies the inequality in
Stewart’s Condition, so n is practical.

On the other hand, observe that for every n ∈ (0, X],
there is a unique k such that 2kn ∈ (X, 2X]. Then, if n is
odd & Q-practical, 2kn will be practical.

Thus, F (X) ≤ PR(2X)� X
logX , by Saias’ Theorem.
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Lower Bound Proof Sketch

Saias obtains his lower bound by comparing the set of practical
numbers with the set of integers with 2-dense divisors:

Definition

An integer n is 2-dense if max1≤i≤τ(n)−1
di+1(n)
di(n)

≤ 2.

Note: All integers with 2-dense divisors are practical, but the
same cannot be said about the Q-practical numbers. For
example, n = 66 is 2-dense but it is not Q-practical.
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Lower Bound Proof Sketch

We obtain our lower bound by comparing the set of Q-practical
numbers with the set of integers with strictly 2-dense divisors:

Definition

An integer n is strictly 2-dense if max1<i<τ(n)−1
di+1(n)
di(n)

<2 and

d2(n)
d1(n)

= 2 =
dτ(n)(n)

dτ(n)−1(n)
.

It turns out that all strictly 2-dense integers are Q-practical.

36 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Lower Bound Proof Sketch

The main idea behind the proof is to show that a positive
proportion of 2-dense integers are strictly 2-dense, except
for some possible obstructions at small primes.

To do this, first we find an upper bound for the number of
integers up to X that are 2-dense but not strictly 2-dense:∑

k>C

∑
m∈(2k−1,2k)
m 2-dense

∑
p∈(2k−1,2k+1)

p prime

∑
j≤X/mp

mpj 2-dense
P−(j)>p

1. (1)

Using sieve methods developed by Saias and Tenenbaum,
along with Brun’s sieve and other classical techniques
from multiplicative number theory, we can show that the
number counted in (1) is ≤ ε X

logX .
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Using sieve methods developed by Saias and Tenenbaum,
along with Brun’s sieve and other classical techniques
from multiplicative number theory, we can show that the
number counted in (1) is ≤ ε X

logX .
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Lower Bound Proof Sketch

The main idea behind the proof is to show that a positive
proportion of 2-dense integers are strictly 2-dense, except
for some possible obstructions at small primes.

To do this, first we find an upper bound for the number of
integers up to X that are 2-dense but not strictly 2-dense:∑

k>C

∑
m∈(2k−1,2k)
m 2-dense

∑
p∈(2k−1,2k+1)

p prime

∑
j≤X/mp

mpj 2-dense
P−(j)>p

1. (1)

Using sieve methods developed by Saias and Tenenbaum,
along with Brun’s sieve and other classical techniques
from multiplicative number theory, we can show that the
number counted in (1) is ≤ ε X

logX .
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Lower Bound Proof Sketch

The final step is to show that a subset of the strictly
2-dense integers is in one-to-one correspondence with a
positive proportion of the 2-dense integers with
obstructions at k < C.

Corollary (T.)

For X sufficiently large, we have

#{n ≤ X : n is practical but not Q-practical} � X

logX
.

Moreover, we also have

#{n ≤ X : n is Q-practical but not practical} � X

logX
.
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Comparison with the prime numbers

Theorem (Chebyshev, 1852)

Let π(X) = # of primes in [1, X]. There exist positive
constants C1 and C2 such that

C1
X

logX
≤ π(X) ≤ C2

X

logX
.

41 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Comparison with the prime numbers

Theorem (Hadamard & de la Valée Poussin, 1896)

Let π(X) = # of primes in [1, X]. Then, we have

lim
X→∞

π(X)

X/ logX
= 1.
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An asymptotic estimate for the Q-practicals?

We can use Sage to compute F (X)/ X
logX :

X F (X)/(X/ logX)

102 1.28944765207667
103 1.20194941854289
104 1.10339877656275
105 1.07081719749688
106 1.02871673165658
107 1.02435010928622
108 1.01792184432701
109 1.00271691477998

Table : Ratios for Q-practicals
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Estimating the constants C1 and C2

The data seem to suggest:

lim
X→∞

F (X)

X/ logX
= 1.

The Bad News:

No one has been able to show that

lim
X→∞

PR(X)

X/ logX

even exists!

The Good News:

We still have 431
2 years to catch up with

Hadamard and de la Valée Poussin!
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Estimating the constants C1 and C2

The data seem to suggest:

lim
X→∞

F (X)

X/ logX
= 1.

The Bad News: No one has been able to show that

lim
X→∞

PR(X)

X/ logX

even exists!

The Good News:

We still have 431
2 years to catch up with

Hadamard and de la Valée Poussin!
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Estimating the constants C1 and C2

The data seem to suggest:

lim
X→∞

F (X)

X/ logX
= 1.

The Bad News: No one has been able to show that

lim
X→∞

PR(X)

X/ logX

even exists!

The Good News: We still have 431
2 years to catch up with

Hadamard and de la Valée Poussin!
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How often does xn − 1...

...have at most one divisor of each degree?

A natural dual to the notion of Q-practical:

Definition

A positive integer n is Q-efficient if xn − 1 has at most one
monic divisor in Q[x] of each degree m ∈ [1, n].

Example: 255 is Q-efficient since the totients of its divisors
are: 1, 2, 4, 8, 16, 32, 64, 128.
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When does xn− 1 have ≤ 1 divisor of each degree?

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Table : Q-efficient values of n ≤ 100
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Q-efficient

Theorem (Pollack, T.)

The set of Q-efficient numbers has positive asymptotic density.
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How often does xn − 1...

...have exactly one divisor of each degree?

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Table : Q-practical and Q-efficient n ≤ 100
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Exactly 1 divisor of each degree

Theorem (Pollack, T.)

There are precisely six integers that are both Q-practical and
Q-efficient, namely 22

i − 1 for i = 0, ..., 5.

Proof Sketch

Let Fm := 22
m

+ 1 represent the mth Fermat number. One can
show that xn − 1 has exactly one divisor of each degree iff each
ϕ(d) represents a distinct power of 2. It is well-known that if p
is an odd prime for which p− 1 is a power of 2, then p = Fm
for some m. Thus, the integers n that are both Q-practical and
Q-efficient are precisely those which are expressible as products
of consecutive Fermat primes. But F5 is not prime!
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Exactly 1 divisor of each degree

Theorem (Pollack, T.)

There are precisely six integers that are both Q-practical and
Q-efficient, namely 22

i − 1 for i = 0, ..., 5.

Proof Sketch

Let Fm := 22
m

+ 1 represent the mth Fermat number.

One can
show that xn − 1 has exactly one divisor of each degree iff each
ϕ(d) represents a distinct power of 2. It is well-known that if p
is an odd prime for which p− 1 is a power of 2, then p = Fm
for some m. Thus, the integers n that are both Q-practical and
Q-efficient are precisely those which are expressible as products
of consecutive Fermat primes. But F5 is not prime!
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Exactly 1 divisor of each degree

Theorem (Pollack, T.)

There are precisely six integers that are both Q-practical and
Q-efficient, namely 22

i − 1 for i = 0, ..., 5.

Proof Sketch

Let Fm := 22
m

+ 1 represent the mth Fermat number. One can
show that xn − 1 has exactly one divisor of each degree iff each
ϕ(d) represents a distinct power of 2.

It is well-known that if p
is an odd prime for which p− 1 is a power of 2, then p = Fm
for some m. Thus, the integers n that are both Q-practical and
Q-efficient are precisely those which are expressible as products
of consecutive Fermat primes. But F5 is not prime!

53 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Exactly 1 divisor of each degree

Theorem (Pollack, T.)

There are precisely six integers that are both Q-practical and
Q-efficient, namely 22

i − 1 for i = 0, ..., 5.

Proof Sketch

Let Fm := 22
m

+ 1 represent the mth Fermat number. One can
show that xn − 1 has exactly one divisor of each degree iff each
ϕ(d) represents a distinct power of 2. It is well-known that if p
is an odd prime for which p− 1 is a power of 2, then p = Fm
for some m.

Thus, the integers n that are both Q-practical and
Q-efficient are precisely those which are expressible as products
of consecutive Fermat primes. But F5 is not prime!
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Exactly 1 divisor of each degree

Theorem (Pollack, T.)

There are precisely six integers that are both Q-practical and
Q-efficient, namely 22

i − 1 for i = 0, ..., 5.

Proof Sketch

Let Fm := 22
m

+ 1 represent the mth Fermat number. One can
show that xn − 1 has exactly one divisor of each degree iff each
ϕ(d) represents a distinct power of 2. It is well-known that if p
is an odd prime for which p− 1 is a power of 2, then p = Fm
for some m. Thus, the integers n that are both Q-practical and
Q-efficient are precisely those which are expressible as products
of consecutive Fermat primes.

But F5 is not prime!

55 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Exactly 1 divisor of each degree

Theorem (Pollack, T.)

There are precisely six integers that are both Q-practical and
Q-efficient, namely 22

i − 1 for i = 0, ..., 5.

Proof Sketch

Let Fm := 22
m

+ 1 represent the mth Fermat number. One can
show that xn − 1 has exactly one divisor of each degree iff each
ϕ(d) represents a distinct power of 2. It is well-known that if p
is an odd prime for which p− 1 is a power of 2, then p = Fm
for some m. Thus, the integers n that are both Q-practical and
Q-efficient are precisely those which are expressible as products
of consecutive Fermat primes. But F5 is not prime!
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How often does xn − 1...

...have a divisor of degree m?

Theorem (Pollack, T.)

Let δ := 1− 1+log log 2
log 2 ≈ 0.0860713. Fix a value δ′ with

0 < δ′ < δ. If 3 ≤ m ≤ X, we have

#{n ≤ X : xn − 1 has a divisor of degree m} � X

(logm)δ′
.
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A theorem of Ford

Theorem (Ford)

Let H(X,Y, Z) represent the count of n ≤ X possessing a
divisor from the interval (Y, Z]. Write Z = Y 1+u. For X,Y
sufficiently large with 2Y ≤ Z ≤ Y 2 ≤ X, we have

H(X,Y, Z) � Xuδ(log
2

u
)−3/2.
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Proof sketch

If xn − 1 has a divisor of degree m, then we can write
m =

∑
d∈D ϕ(d) where D is some subset of divisors of n.

Moreover, there must be some d for which ϕ(d) is larger than
average, and so ϕ(d) ≥ m

#{d : d|n, d≤m} . The count in the

denominator is typically around logm. But ϕ(d) ≤ m and ϕ(d)
is not too different from d. So, solving this problem roughly
amounts to knowing how often an integer n has a divisor
d ∈ ( m

logm ,m), which is where Ford’s theorem is useful.
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Proof sketch

If xn − 1 has a divisor of degree m, then we can write
m =

∑
d∈D ϕ(d) where D is some subset of divisors of n.

Moreover, there must be some d for which ϕ(d) is larger than
average, and so ϕ(d) ≥ m

#{d : d|n, d≤m} .

The count in the

denominator is typically around logm. But ϕ(d) ≤ m and ϕ(d)
is not too different from d. So, solving this problem roughly
amounts to knowing how often an integer n has a divisor
d ∈ ( m

logm ,m), which is where Ford’s theorem is useful.
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Proof sketch

If xn − 1 has a divisor of degree m, then we can write
m =

∑
d∈D ϕ(d) where D is some subset of divisors of n.

Moreover, there must be some d for which ϕ(d) is larger than
average, and so ϕ(d) ≥ m

#{d : d|n, d≤m} . The count in the

denominator is typically around logm.

But ϕ(d) ≤ m and ϕ(d)
is not too different from d. So, solving this problem roughly
amounts to knowing how often an integer n has a divisor
d ∈ ( m

logm ,m), which is where Ford’s theorem is useful.
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Proof sketch

If xn − 1 has a divisor of degree m, then we can write
m =

∑
d∈D ϕ(d) where D is some subset of divisors of n.

Moreover, there must be some d for which ϕ(d) is larger than
average, and so ϕ(d) ≥ m

#{d : d|n, d≤m} . The count in the

denominator is typically around logm. But ϕ(d) ≤ m and ϕ(d)
is not too different from d.

So, solving this problem roughly
amounts to knowing how often an integer n has a divisor
d ∈ ( m

logm ,m), which is where Ford’s theorem is useful.
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Proof sketch

If xn − 1 has a divisor of degree m, then we can write
m =

∑
d∈D ϕ(d) where D is some subset of divisors of n.

Moreover, there must be some d for which ϕ(d) is larger than
average, and so ϕ(d) ≥ m

#{d : d|n, d≤m} . The count in the

denominator is typically around logm. But ϕ(d) ≤ m and ϕ(d)
is not too different from d. So, solving this problem roughly
amounts to knowing how often an integer n has a divisor
d ∈ ( m

logm ,m), which is where Ford’s theorem is useful.
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Switching gears...
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How do these results change...

...if we factor xn − 1 in Fp[x]?

Definition

We say that an integer n is Fp-practical if xn − 1 has a divisor
of every degree between 1 and n in Fp[x].

Notation:
For each rational prime p, let

Fp(X) = #{n ≤ X : n is Fp-practical}.
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Counting the Fp-practicals up to X

Computations in Sage yield the following table of ratios:

X F2(X)/(X/ logX)

102 1.56575786323595
103 1.67858453279266
104 1.64865092658374
105 1.69274543111457
106 1.66167434786971
107 1.66061354691737

Table : Ratios for F2-practicals

66 / 82

Paul Pollack & Lola Thompson On the degrees of divisors of xn − 1



On the
degrees of
divisors of
xn − 1

Paul Pollack
& Lola

Thompson

At least one
divisor of
each degree

At most one
divisor of
each degree

Exactly one
divisor of
each degree

A divisor of
degree m

Variants over
Fp

Overarching Goal

Our computational results seem to suggest the following
conjecture:

Conjecture

Let p be a rational prime. Then, for X sufficiently large, we
have

Fp(X)� X

logX
.
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Density 0 argument

We’ll sketch a proof of the following (weaker) theorem:

Theorem (T.)

Let p be a prime number. Assuming that the Generalized
Riemann Hypothesis holds, we have Fp(X) = o(X) as X →∞.
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Proof sketch

Let `p(d) denote the multiplicative order of p (mod d).

We show that, when n has the “normal” number of prime
factors, there exists an index j for which

1 +
∑
i≤j

`p(di)
ϕ(di)

`p(di)
< `p(dj+k)

holds for all k ≥ 1. Thus, such an n cannot be
Fp-practical.

Since the set of n having many more (or many fewer) than
the normal number of prime factors has asymptotic
density 0, then the Fp-practicals must lie within a set with
asymptotic density 0.
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Proof sketch

Let `p(d) denote the multiplicative order of p (mod d).

We show that, when n has the “normal” number of prime
factors, there exists an index j for which

1 +
∑
i≤j

`p(di)
ϕ(di)

`p(di)
< `p(dj+k)

holds for all k ≥ 1. Thus, such an n cannot be
Fp-practical.

Since the set of n having many more (or many fewer) than
the normal number of prime factors has asymptotic
density 0, then the Fp-practicals must lie within a set with
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Key Lemmas

Recall that Ω(n) has normal order log log n.

Lemma

Let n be a positive integer. Fix ε = 1/1000. If n is in the set
with asymptotic density 1 for which

(1− ε) log log n ≤ Ω(n) ≤ (1 + ε) log log n,

then there exists an integer j such that

dj+1

dj
> e(logn)

0.3
.
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Lemma (Friedlander, Pomerance, Shparlinski)

Let n and d be positive integers with d | n. Then d
`p(d)

≤ n
`p(n)

.

Lemma (Li, Pomerance)

Under the GRH, for any fixed integer a > 1, the number of
positive integers n ≤ X coprime to a with
`a(n) ≤ X

(logX)2 log3X
is o(X).
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Main argument

Let n be a positive integer with divisors
d1 < d2 < · · · < dτ(n).

Suppose that n has the normal number of prime factors.

Furthermore, let p be a rational prime with p - n.

On one hand, we have

1 +
∑
i≤j

`p(di)
ϕ(di)

`p(di)
= 1 +

∑
i≤j

ϕ(di) ≤ jdj ≤ dj log n.
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Main argument

On the other hand, by Li and Pomerance’s lemma, we may
assume that `p(n) > n

(logn)2 log3 n
.

As a result, for all k ≥ 1, we have

`p(dj+k) >
dj+k

(log n)2 log3 n
≥ dj

e(logn)
0.3

(log n)2 log3 n
≥ dj log n,

where the first two inequalities follow from the remaining
lemmas.

Therefore, we have 1 +
∑

i≤j `p(di)
ϕ(di)
`p(di)

< `p(dj+k) holds

for all k ≥ 1.
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What we can show...

Theorem (T.)

Assuming GRH, for each prime p, we have

Fp(X)� X

√
log logX

logX
.
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A divisor of degree m?

Theorem (Pollack, T.)

Assuming GRH, if 3 ≤ m ≤ X, then the number of n ≤ X for
which xn − 1 has a divisor of degree m in Fp[x] is

�p
X

(logm)2/35
.
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Thank you!
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