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Abstract. Fix a field F . In this paper, we study the sets DF (n) ⊂ [0, n]
defined by

DF (n) := {0 ≤ m ≤ n : Tn − 1 has a divisor of degree m in F [T ]}.
When DF (n) consists of all integers m with 0 ≤ m ≤ n, so that Tn − 1
has a divisor of every degree, we call n an F -practical number. The
terminology here is suggested by an analogy with the practical numbers
of Srinivasan, which are numbers n for which every integer 0 ≤ m ≤ σ(n)
can be written as a sum of distinct divisors of n. Our first theorem states
that, for any number field F and any x ≥ 2,

#{F -practical n ≤ x} �F
x

log x
;

this extends work of the second author, who obtained this estimate when
F = Q.

Suppose now that x ≥ 3, and let m be a natural number in [3, x]. We
ask: For how many n ≤ x does m belong to DF (n)? We prove upper
bounds in this problem for both F = Q and F = Fp (with p prime),
the latter conditional on the Generalized Riemann Hypothesis. In both
cases, we find that the number of such n ≤ x is OF (x/(logm)2/35),
uniformly in m.
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1. Introduction

Let F be a field. In this paper, we study the sets of nonnegative integers
which appear as the set of degrees of divisors of Tn−1 in F [T ], i.e., the sets

DF (n) := {0 ≤ m ≤ n : Tn − 1 has a divisor of degree m over F}.
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When this set consists of all integers 0 ≤ m ≤ n, we call n an F -practical
number. For example, 6 is a Q-practical number, as shown by the following
list of divisors of T 6 − 1:

1, T − 1, T 2 + T + 1, T 3 − 1, T 4 + T 3 − T − 1,

T 5 + T 4 + T 3 + T 2 + T + 1, T 6 − 1.

It is easy to see directly (for example, by applying Gauss’s lemma) that if
Tn − 1 has a divisor of a given degree over Q, then it has a divisor of the
same degree over Z. As a consequence, for any field F , each Q-practical
number is also an F -practical number.

The distribution of Q-practical numbers has been investigated by the
second author [Tho12a]. Recall that with Φd(T ) denoting the dth cyclotomic
polynomial, we have

(1.1) Tn − 1 =
∏
d|n

Φd(T ).

Over Q, each of the right-hand factors Φd(T ) is irreducible of degree ϕ(d). It
follows that a natural number n is Q-practical precisely when every integer
m ∈ [0, n] can be written as a sum of terms ϕ(d), where d runs over a subset
of the divisors of n.

The term “F -practical number” is suggested by an analogy between the
Q-practical numbers and Srinivasan’s practical numbers [Sri48], which are
numbers n for which every m ∈ [0, σ(n)] can be written as a sum of distinct
divisors of n. Such n have been studied by several authors, including Erdős
[Erd50], Hausman & Shapiro [HS84], Tenenbaum [Ten86, Ten95], Margen-
stern [Mar91], and Saias [Sai97]. In the last of these papers, Saias shows
that for all x ≥ 2,

(1.2) #{practical n ≤ x} � x

log x
.

Exploiting the analogy between practical numbers and Q-practical num-
bers, the second author [Tho12a] proved the Q-practical analogue of Saias’s
estimates:

#{Q-practical n ≤ x} � x

log x
.

(In the above statements, the notation “f � g” means that we have both
f � g and g � f .)

One of our goals in this paper is to gain some understanding of the F -
practical numbers over more general fields F . We begin by observing that
each cyclotomic polynomial Φd(T ) always splits into (not necessarily dis-
tinct) irreducible factors of the same degree over F . This is easy to see in
the case when the characteristic of F , say p, does not divide d (for example,
in characteristic zero). In this case, the roots of Φd(T ) are exactly the ϕ(d)
primitive dth roots of unity from the algebraic closure of F . Each primitive
dth root of unity generates the same extension of F , and thus all irreducible
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factors of Φd(T ) have the same degree, as desired. The case when p divides

d reduces to the previous one, since then Φd(T ) = Φd(p)
(T )ϕ(d/d(p)), where

d(p) denotes the largest divisor of d coprime to p.
From the last paragraph, it makes sense to define an arithmetic function

ϕF by letting ϕF (d) denote the common degree of each irreducible factor of
Φd(T ) over F . (For example, ϕF = ϕ when F = Q.) Then each Φd(T ) is a
product of ϕ(d)/ϕF (d) (not necessarily distinct) irreducible polynomials of
degree ϕF (d). So from (1.1), m is the degree of a divisor of Tn− 1 precisely
when there is a collection S of divisors of n for which m can be written in
the form

(1.3) m =
∑
d∈S

adϕF (d), where each 0 ≤ ad ≤
ϕ(d)

ϕF (d)
.

In §2, we use this criterion and some easy algebraic number theory to extend
Thompson’s theorem on Q-practical numbers to an arbitrary number field.
Note that since each Q-practical number is automatically F -practical, it is
enough to prove the upper bound estimate.

Theorem 1.1. Let F be a number field. Then for x ≥ 2, the number of
F -practical numbers in [1, x] is OF ( x

log x).

In her thesis ([Tho12b]; see also [Tho12c], [Tho12d]), Thompson studies
the F -practical numbers also in the case when F = Fp (with p prime). To
discuss this case further, we need some notation. Write `p(d) for the mul-
tiplicative order of p modulo d, assuming that gcd(d, p) = 1. In general,
put `∗p(d) = `p(d(p)), where d(p) denotes the largest divisor of d coprime to
p. As shown in [Tho12d], we have ϕFp = `∗p. Our limited understanding of
the distribution of the numbers `∗p(d) is a significant obstacle to the study of
Fp-practical numbers. To work around this, Thompson assumes the Gen-
eralized Riemann Hypothesis (GRH). (Throughout this paper, GRH always
means the Riemann Hypothesis for Dedekind zeta functions.) Under this
assumption, she shows (ibid.) that for x ≥ 3,

x

log x
� #{Fp-practical n ≤ x} �p x

√
log log x

log x
.

The numerical data (see, for instance, [Tho12b, Tables 1.2–1.4]) suggests
that for each fixed p, the true count of Fp-practical numbers is ∼ Cpx/ log x,
as x→∞, where Cp is a positive constant depending on p.

Up to this point, we have been discussing integers n for which DF (n) is the
entire interval [0, n]. A weaker notion also suggests itself: Take an integer
m ≤ x and count how often, among those n ≤ x, one has m ∈ DF (n). In
other words, instead of requiring Tn− 1 to have divisors of every degree, we
fix in advance a target degree m. Our next theorem gives an upper bound in
the case when F = Q. It is convenient to label once and for all the so-called
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Erdős–Ford–Tenenbaum constant

(1.4) δ := 1− 1 + log log 2

log 2
.

Numerically, δ ≈ 0.0860713.

Theorem 1.2. Fix a value δ′ with 0 < δ′ < δ, where δ is defined in (1.4).
Then if 3 ≤ m ≤ x, the number of n ≤ x for which Tn − 1 has a divisor of
degree m in Q[T ] is O(x/(logm)δ

′
).

Theorem 1.2 should be viewed as analogous to a theorem of Erdős, who
considered [Erd70, p. 130] how often a target natural number m could be
written as a sum of distinct divisors of n. Indeed, our proof uses many of
the same ideas. However, Erdős was content to work with fixed values of m,
whereas we seek a result with complete uniformity in m.

It would be desirable to have a sharp lower bound to complement the
upper bound in Theorem 1.2. An easy adaptation of the methods of [PT12]
gives the following related estimate: If 3 ≤ m ≤ 1

2x, then the number of
n ∈ [1, x] for which Tn−1 has a divisor of each degree in [0,m] is� x/ logm.

Our last result is a GRH-conditional version of Theorem 1.2 with F = Fp

rather than F = Q.

Theorem 1.3 (assuming GRH). Fix a prime p. Suppose that 3 ≤ m ≤ x.

(i) If 3 ≤ m ≤ x1−1/ log log x, then the number of n ≤ x for which Tn− 1
has a divisor of degree m in Fp[T ] is

�p x/(logm)1/13.

(ii) If x1−1/ log log x < m ≤ x, then the count of such n is

�p x/(logm)2/35.

The exponents 1/13 and 2/35 appearing above are close to the best our
methods will yield. It would be interesting to know how close they are to
being best possible.

The proof of Theorem 1.3 follows the same broad outline as that of The-
orem 1.2. The extra difficulty stems from the fact that while ϕ(d) is never
much smaller than d (see Lemma 3.1 below), `∗p(d) can be considerably
smaller. However, under GRH, one can show that `∗p(d) is typically fairly
close to d. This is enough for our purposes.

One might compare Theorem 1.3 with the result of Car [Car84] that in a
wide range of m and n, few polynomials of degree n over Fp (or a general
finite field Fq) have a divisor of degree m. One must be cautious about such
comparisons, however. For example, a typical polynomial of degree n over Fp

has about nlog 2 divisors (compare with [KZ01, Theorem 3.3.7]). However,
for each fixed A > 0, the polynomial Tn − 1 has more than exp((log n)A)
divisors on a set of n of asymptotic density 1. One can prove this using
the above results on the factorization of cyclotomic polynomials together
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with the work of Erdős, Pomerance, and Schmutz on the normal order of
Carmichael’s function λ(n) (see [EPS91, Theorem 2]).

A word about the organization of the paper: We prove Theorem 1.1 in
§2. Theorem 1.2 is proved in §3, after recalling some helpful results from the
anatomy of integers. In §4.1, we review the GRH-conditional results needed
for the proof of Theorem 1.3, which we present in §4.3. We conclude the
paper in §5 by discussing some natural variants of the Q-practical numbers.

For example, we show that 225 − 1 is the largest integer n for which Tn − 1
has exactly one monic divisor of each degree 0 ≤ m ≤ n in Q[T ].

Notation. We write ω(n) :=
∑

p|n 1 for the number of distinct prime factors

of n and Ω(n) :=
∑

pk|n 1 for the number of prime factors of n counted with

multiplicity; Ω(n; y) :=
∑

pk|n, p≤y 1 denotes the number of prime divisors of

n not exceeding y, again counted with multiplicity. The number of divisors
of n is denoted d(n); for the number of divisors not exceeding y, we write
d(n; y). We use P−(m) and P+(m) for the smallest and largest prime factors
of m, respectively, with the conventions that P−(1) = ∞ and P+(1) = 1.
An integer n for which P+(n) ≤ y is called y-smooth (or y-friable); the
number of y-smooth n ≤ x is denoted Ψ(x, y).

We write λ(n) for Carmichael’s lambda-function, defined as the exponent
of the finite abelian group (Z/nZ)×. We also adopt the following notation,
seen above when a = p: For each natural number n coprime to a, we write
`a(n) for the multiplicative order of a mod n. For n not necessarily coprime
to a, we let n(a) denote the largest divisor of n coprime to a, and we define
`∗a(n) = `a(n(a)). We call `∗a(n) the generalized order of a mod n. (Note that
`∗a(n) always divides λ(n).) When the intended value of a is clear, we omit
the subscripts on ` and `∗.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 proceeds through a series of lemmas. The
first of these, due to Stewart [Ste54] and Sierpiński [Sie55], characterizes
Srinivasan’s practical numbers in terms of their prime factorization.

Lemma 2.1. Let n be a natural number, and write the prime factorization
of n in the form n =

∏r
i=1 p

ei
i , where each ei > 0 and p1 < p2 < · · · < pr.

Let j be the first index for which the inequality

(2.1) pj ≤ 1 + σ

 ∏
1≤i<j

peii


fails, where we take j = r + 1 if no such index exists. Set

(2.2) n′ :=
∏

1≤i<j
peii .
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Then every natural number 1 ≤ m ≤ σ(n′) can be written as a sum of
distinct divisors of n, but σ(n′) + 1 cannot be written as a sum of distinct
divisors of n. Consequently, n is practical precisely when (2.1) holds for all
indices 1 ≤ j ≤ r.

In what follows, we refer to n′, as defined in (2.2), as the practical com-
ponent of n. It can be shown (compare with [Mar91, Proposition 4]) that
the practical component n′ is the largest practical divisor of n.

For the remainder of the proof, we fix a number field F , viewed as a
subfield of a fixed algebraic closure Q of Q. We use ζd for a primitive dth
root of unity from Q. In the next several lemmas, we show that if n is
F -practical, then there is a small multiple of n that is practical in the sense
of Lemma 2.1. The desired upper bound then follows from Saias’s upper
bound (1.2) on the count of practical numbers.

Lemma 2.2. Let d be a natural number coprime to the (absolute) discrim-
inant of F . Then ϕF (d) = ϕ(d).

Proof. Since the discriminant of Q(ζd) divides dϕ(d) (see [Rib72, p. 269]),
the number fields F and Q(ζd) have relatively prime discriminants. Since
F (ζd) is the compositum of F and Q(ζd), we have (see [Rib72, p. 218])

[F (ζd) : Q] = [F : Q] · [Q(ζd) : Q] = [F : Q]ϕ(d).

It follows that ϕ(d) = [F (ζd):Q]
[F :Q] = [F (ζd) : F ] = ϕF (d), as claimed. �

Lemma 2.3. Let p be a prime number. The product of the primes less than
p is always at least p− 1.

Proof. This is easy to verify directly for primes p < 5. Now suppose that
the claim has been shown for all primes smaller than p, where p ≥ 5, and
let p′ be the prime directly preceding p. Note that p < 2p′, by Bertrand’s
postulate. By the induction hypothesis, the product of the primes smaller
than p is at least

p′(p′ − 1) ≥ 3(p′ − 1) = 3p′ − 3 >
3

2
p− 3 ≥ p− 1,

since p ≥ 5. �

Lemma 2.4. If n is F -practical and p is the first prime not dividing n, then
pn is also F -practical.

Proof. We need to show that T pn − 1 has a divisor of degree m over F for
all 0 ≤ m ≤ pn. Since T pn−1

Tn−1 has degree (p− 1)n, and Tn − 1 has a divisor

of each degree in [0, n], we see that T pn − 1 has a divisor of every degree m
with (p− 1)n ≤ m ≤ pn. So we can assume that 0 ≤ m < (p− 1)n.

Write m = (p − 1)q + r, where 0 ≤ q < n and 0 ≤ r < p − 1. Since n is
divisible by all primes < p, we have from Lemma 2.3 that n ≥ p−1 > r. We
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are assuming that n is F -practical, and so there is a divisor f(T ) ∈ F [T ] of
Tn − 1 of degree r. That is, there is an f(T ) ∈ F [T ] of degree r for which

(2.3) f(T ) |
∏
d|n

Φd(T ).

Similarly, since q < n, there is a divisor of Tn−1 of degree q. Such a divisor
implies the existence of a representation (as in 1.3)

(2.4) q =
∑
d|n

adϕF (d), where 0 ≤ ad ≤
ϕ(d)

ϕF (d)
.

Multiplying (2.4) by p− 1, we obtain a representation

(p− 1)q =
∑
d|n

(
ad

p− 1

ϕF (pd)/ϕF (d)

)
ϕF (pd)

=
∑
d|n

bdϕF (pd), with each bd := ad
p− 1

ϕF (pd)/ϕF (d)
.(2.5)

With Fd := F (ζd), we have (noting that p - d, since p - n)

ϕF (pd)

ϕF (d)
= [F (ζpd) : F (ζd)] = [Fd(ζp) : Fd] = ϕFd(p) | p− 1,

and so all the bd are integers. Moreover, for each d dividing n,

0 ≤ bd ≤
ϕ(d)

ϕF (d)

p− 1

ϕF (pd)/ϕF (d)
=

ϕ(pd)

ϕF (pd)
.

We now deduce from (2.5) that there is a g(T ) ∈ F [T ] of degree (p− 1)q for
which

(2.6) g(T ) |
∏
d|n

Φpd(T ).

Combining (2.3) and (2.6), we see that over F ,

f(T )g(T ) |

∏
d|n

Φd(T )Φpd(T )

 = T pn − 1,

and fg has degree r + (p− 1)q = m. So fg is our sought-after divisor. �

Repeatedly applying Lemma 2.4, we arrive at the following result.

Lemma 2.5. If n is F -practical, then lcm[n,
∏
p≤z p] is F -practical for every

real number z.

Lemma 2.6. Set M :=
∏
p≤2|D| p, where D is the discriminant of F . If n

is F -practical, then lcm[n,M ] is practical (in the sense of Srinivasan).
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Proof. Put N := lcm[n,M ]. By Lemma 2.5, N is F -practical. We will
show that N satisfies the Stewart–Sierpiński practicality criterion given in
Lemma 2.1. Assuming N is not practical, let N ′ be the practical component
of N . Then N ′ < N , and by Lemma 2.1, with p denoting the smallest prime
dividing N/N ′, we have

(2.7) p > σ(N ′) + 1.

We must also have that p > 2|D|. To see this, observe that by construc-
tion, N is divisible by all primes not exceeding 2|D|. So if p ≤ 2|D|, then
N ′ is divisible by all primes < p, and so by Lemma 2.3,

1 + σ(N ′) ≥ 1 +
∏
q<p

q prime

(q + 1) ≥ 1 +
∏
q<p

q prime

q ≥ 1 + (p− 1) = p,

contradicting (2.7). Hence, p > 2|D|.
We claim that TN − 1 has no divisor of degree N ′+ 1, contradicting that

N is F -practical. Suppose contrariwise that

(2.8) N ′ + 1 =
∑
d|N

adϕF (d), where 0 ≤ ad ≤
ϕ(d)

ϕF (d)
.

The contribution to the sum in (2.8) from divisors d of N ′ is bounded by∑
d|N ′ ϕ(d) = N ′; hence, there must be a d dividing N but not N ′ which

contributes to the right-hand side of (2.8). Since all the summands on the
right-hand side of (2.8) are nonnegative, clearly

(2.9) ϕF (d) ≤ N ′ + 1.

Since d divides N but not N ′, we can choose a prime r dividing gcd(d,N/N ′).
Clearly,

r ≥ P−(N/N ′) = p > max{2|D|, σ(N ′) + 1}.

Since r | d and r - D, Lemma 2.2 shows that

ϕF (d) = [F (ζd) : F ] ≥ [F (ζr) : F ] = ϕF (r) = ϕ(r) = r − 1 ≥ σ(N ′) + 1.

Since 2 | N , the practical component N ′ of N satisfies N ′ ≥ 2, and so
σ(N ′) ≥ N ′ + 1. Thus, ϕF (d) ≥ N ′ + 2 > N ′ + 1, contradicting (2.9). �

Proof of Theorem 1.1. Define M as in Lemma 2.6. If n ≤ x is F -
practical, then dn is practical for some d dividing M , namely d = M/(M,n).
Since dn ≤ dx, the upper-estimate of (1.2) shows that the number of F -
practical n ≤ x corresponding to this d is O(dx/ log x). Summing over the
OF (1) divisors d of M completes the proof. �
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3. Proof of Theorem 1.2

The next few lemmas collect certain structural results about integers
needed for the proof of Theorem 1.2. The first is a classical result of Landau
(see [HW08, Theorem 328, p. 352]) giving the minimal order of the Euler
ϕ-function.

Lemma 3.1. We have lim infn→∞
ϕ(n)

n/ log logn = e−γ.

Recall that d(n; y) denotes the number of divisors of n not exceeding y.
The next lemma is implicit in [Erd70].

Lemma 3.2. Let x, y ≥ 2, and let K ≥ 1. The number of integers n ≤ x
with d(n; y) ≥ K is O( 1

Kx log y).

Proof. This is immediate from the first-moment estimate∑
n≤x

d(n; y) =
∑
d≤y

∑
n≤x
d|n

1 ≤ x
∑
d≤y

1

d
� x log y. �

The next result (easily deduced from [HT88, Theorems 08–09, pp. 5–6];
see also [HT88, Exercise 04, p. 12]) is an upper bound on the number of
integers n with an abnormally large number of prime factors.

Lemma 3.3. Let x ≥ 3. Uniformly for 0 < κ ≤ 1.9, the number of n ≤ x
with Ω(n) > κ log log x is

� x/(log x)Q(κ), where Q(κ) = κ log κ− κ+ 1.

Remark. It is straightforward to check that the Erdős–Ford–Tenenbaum
constant δ of (1.4) satisfies δ = Q(1/ log 2). This property of δ will be
important in what follows.

Write H(x, y, z) for the count of n ∈ [1, x] possessing a divisor from the
interval (y, z]. The proof of Theorem 1.2 requires fairly precise estimates
for H. Conveniently, Ford [For08] has determined the order of magnitude of
H(x, y, z) in the complete space of parameters. His full result is somewhat
complicated to state, but the next two lemmas isolate the special cases that
are of interest to us (extracted from [For08, Theorem 1(v), (vi)]). For our
purposes, earlier results of Tenenbaum would also suffice (see, e.g., [HT88,
Theorem 21, pp. 29–30]).

Lemma 3.4. Let x > 105. Suppose y ≥ 100 and that 2y ≤ z ≤ y2 ≤ x.
Write z = y1+u, so that u = log(z/y)/ log(y). Then

H(x, y, z) � xuδ
(

log
2

u

)−3/2
,

where δ ≈ 0.08607 is the constant defined in (1.4).
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Lemma 3.5. Let x > 105. Suppose that
√
x < y < z ≤ x. Suppose also

that z ≥ y + 1 and x/y ≥ 1 + x/z. Then

H(x, y, z) � H(x, x/z, x/y).

We also need some understanding of the distribution of smooth numbers.
The following upper bound is contained in work of de Bruijn [dB66]. Recall
that Ψ(x, y) denotes the number of y-smooth numbers n ≤ x.

Lemma 3.6. For 2 ≤ y ≤ x, set u := log x
log y . Whenever y ≥ (log x)2 and

u→∞, we have

Ψ(x, y) ≤ exp(−(1 + o(1))u log u).

Proof of Theorem 1.2. We may suppose that m (and hence also x) is
large, since the assertion of the theorem is trivial for bounded values of m.
We take two cases.

Case 1: For the first half of the proof, we will assume that

(3.1) m ≤ x exp(− log x/ log log x).

Suppose that Tn − 1 has a divisor of degree m in Q[T ]. We can assume
that n satisfies the inequality

(3.2) d(n; 2m log logm) < (logm)2.

Indeed, by Lemma 3.2, the count of n ≤ x not satisfying (3.2) is O(x/ logm),
which is negligible for us.

Since Tn−1 has a divisor of degree m, we can choose (as in (1.3)) a subset
S of the divisors of n with

(3.3) m =
∑
d∈S

ϕ(d).

If d ∈ S , then ϕ(d) ≤ m, and so Lemma 3.1 implies that d ≤ 2m log logm.
(We use here that m is large and that eγ < 2.) Thus, #S < (logm)2

by (3.2). But then some term on the right-hand side of (3.3) must exceed
m/(logm)2. In particular, there must be some d ∈ S with

2m log logm ≥ d ≥ ϕ(d) > m/(logm)2.

Hence, n is counted by

H̃ := H(x,m/(logm)2, 2m log logm).

We consider three cases:

• If 2m log logm ≤
√
x, we apply Lemma 3.4 with y = m/(logm)2,

z = 2m log logm. In this case, u � log logm
logm , and we find that

H̃ � x

(
log logm

logm

)δ
(log logm)−3/2 � x/(logm)δ,

as desired.
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• If m/(logm)2 >
√
x, then by Lemma 3.5,

H̃ � H
(
x,

x

2m log logm
,x

(logm)2

m

)
.

Recall we are assuming that m satisfies (3.1). Apply Lemma 3.4

with y = x
2m log logm and z = x (logm)2

m , so that (using (3.1))

u � log logm

log(x/(2m log logm))

� (log logm)(log log x)

log x
� (log logm)2

logm
.

We obtain that

H̃ � x

(
(log logm)2

logm

)δ
(log logm)−3/2 � x/(logm)δ.

• Finally, suppose that m/(logm)2 ≤
√
x < 2m log logm. Then√

x/(log
√
x)3 ≤ m/(logm)2 and 2m log logm <

√
x(log x)3. Thus,

H̃ = H

(
x,

m

(logm)2
,
√
x

)
+H(x,

√
x, 2m log logm)

≤ H
(
x,

√
x

(log
√
x)3

,
√
x

)
+H(x,

√
x,
√
x(log x)3).

Applying Lemmas 3.4 and 3.5 as above, we find that both terms on
the right-hand side are � x/(log x)δ � x/(logm)δ.

This completes the proof of Theorem 1.2 in the case when m satisfies (3.1).
In fact, in this case we obtain the upper bound claimed in the theorem with
δ′ replaced by the larger number δ.

Case 2: Now suppose (3.1) fails, i.e., that

(3.4) x exp(− log x/ log log x) < m ≤ x.
Let n ≤ x be such that Tn−1 has a divisor of degree m. We may assume

that p = P+(n) satisfies

(3.5) P+(n) > exp(2 log x/ log log x).

Indeed, by Lemma 3.6 (with u = 1
2 log log x), the number of n ≤ x not

satisfying (3.5) is, for large x, at most

x

exp(1
3 log log x log log log x)

<
x

log x
≤ x

logm
,

which is negligible.
We fix ε > 0 (depending only on δ′) so that all but O(x/(log x)δ

′
) natural

numbers n ≤ x satisfy the inequality

(3.6) Ω(n) ≤
(

1

log 2
− ε
)

log log x.
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Since δ = Q(1/ log 2) and δ′ < δ, the possibility of choosing such an ε follows
from Lemma 3.3 and the continuity of the function Q(κ) appearing in the
lemma statement. In what follows, we assume that (3.6) holds.

Since Tn−1 has a divisor of degree m, we may take a representation of m
in the form (3.3), where S is a set of divisors of n. For each d ∈ S divisible
by p, the number ϕ(d) is divisible by p− 1. So reducing (3.3) modulo p− 1,
we find that

(3.7) m ≡
∑
d∈T

ϕ(d) (mod p− 1), where T := {d ∈ S : p - d}.

Notice that T consists of divisors of r := n/p. Also, from (3.5), we have

r ≤ x/ exp(2 log x/ log log x).

Moreover, recalling (3.4),

m−
∑
d∈T

ϕ(d) ≥ m−
∑
d|r

ϕ(d) ≥ m− r

≥ x exp(− log x/ log log x)− x exp(−2 log x/ log log x) > 0.(3.8)

We now count the possibilities for n by first fixing r and then using the
relation (3.7) to count the number of possibilities for p given r. Since T
consists entirely of divisors of r, the number of possibilities for T , given r,
is at most

2d(r) < 2d(n) ≤ 22Ω(n)
< exp((log x)1− 1

2
ε).

(We use (3.6) in the last step.) Rewriting (3.7) in the form

p− 1 |

(
m−

∑
d∈T

ϕ(d)

)
,

we see that given T , the number of possibilities for p is bounded by

max
h≤x

d(h) < exp(log x/ log log x).

(We use here the maximal order of the divisor function, as in [HW08, The-
orem 317, p. 345].) Since p and r determine n = pr, the number of possi-
bilities for n is

<
x

exp(2 log x/ log log x)
· exp((log x)1− 1

2
ε) · exp(log x/ log log x)

<
x

exp(1
2 log x/ log log x)

<
x

log x
,

which is negligible. This completes the proof. �
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4. Proof of Theorem 1.3

4.1. Preliminary estimates. Throughout §4, we assume that a > 1 is
a fixed integer, and we write `∗(n) for the generalized order of a modulo
n. In §4.1, we collect some known results on the behavior of `∗(n) and the
closely associated function λ(n). These estimates will eventually be applied
to prove Lemma 4.7, which will be the key component of our demonstration
of Theorem 1.3.

Remark. For the rest of §4, we suppress any dependence of implied con-
stants on a.

The following lemma, due to Kurlberg and Pomerance [KP05, Theorem
23], shows that under GRH the numbers `(p) are usually close to p− 1.

Lemma 4.1 (assuming GRH). Uniformly for 1 ≤ y ≤ log x, the number of
primes p ≤ x (not dividing a) for which `(p) ≤ p/y is

� π(x)

y
+

x

(log x)2
log log x.

Lemma 4.2 (assuming GRH). Let x ≥ 3. The number of primes p ≤ x
coprime to a with `(p) ≤ p/ log p is O( x

(log x)2 log log x).

Proof. We can restrict our attention to p >
√
x. Then `(p) ≤ p/ log p <

2p/ log x, and the estimate follows from Lemma 4.1 with y = 1
2 log x. �

The next lemma is a special case of a result of Gottschlich [Got12, Lemma
2.3].

Lemma 4.3. Let P be a set of primes. Suppose that for certain constants
θ1 > 1, θ2 > 0, the number of elements of P not exceeding x is

� x

(log x)θ1
(log log x)θ2 ,

for all x ≥ 3. Then for x ≥ 3, the number of integers n ≤ x all of whose
prime factors belong to P is also

� x

(log x)θ1
(log log x)θ2 ,

where the implied constant depends at most on P and the θi.

Lemma 4.4 (assuming GRH). Let x ≥ 3. The number of n ≤ x all of
whose prime factors p either

(i) divide a, or
(ii) satisfy `(p) ≤ p/ log p

is O( x
(log x)2 log log x).

Proof. We let P be the set of primes p dividing a or satisfying `(p) ≤
p/ log p. Since there are only O(1) primes dividing a, Lemma 4.2 shows that
the hypotheses of Lemma 4.3 are satisfied with θ1 = 2 and θ2 = 1. �
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Finally, we recall an estimate of Friedlander, Pomerance, and Shparlinski
[FPS01] for the number of occurrences of small values of the Carmichael
λ-function.

Lemma 4.5. Suppose that x is sufficiently large and that ∆ ≥ (log log x)3.
Then the number of n ≤ x with λ(n) ≤ n exp(−∆) is at most

x exp(−0.69(∆ log ∆)1/3).

4.2. Key lemmas. In this section, we present several lemmas that play an
important role in the proof of Theorem 1.3. The following lemma is a close
cousin of Lemma 3.2, but the proof is somewhat more intricate. It should
also be compared with Lemma 3.3, which gives a sharper result but only
under more restrictive hypotheses.

Lemma 4.6. Let x, y ≥ 2, and let k ≥ 1. The number of n ≤ x with
Ω(n; y) ≥ k is O( k

2k
x log y).

Remark. Taking y = x, we see that the number of n ≤ x with Ω(n) ≥ k is
O( k

2k
x log x).

Proof. The proof is almost identical to that suggested in Exercise 05 of
[HT88, p. 12], but we include it for the sake of completeness. Let v :=
2−1/k. Let g be the arithmetic function determined through the convolution

identity vΩ(n;y) =
∑

d|n g(d). Then g is multiplicative. For e ≥ 1, we have

g(pe) = ve − ve−1 if p ≤ y, and g(pe) = 0 if p > y. Hence,∑
n≤x

vΩ(n;y) =
∑
d≤x

g(d)
⌊x
d

⌋
≤ x

∑
d≤x

g(d)

d

≤ x
∏
p≤y

(
1 +

v − 1

p
+
v2 − v
p2

+ . . .

)

=
x

2− v
∏

3≤p≤y

(
1 +

v − 1

p− v

)
.

Now 2− v = 1/k, and the rightmost product does not exceed

exp

 ∑
3≤p≤y

v − 1

p− v

 ≤ exp

 ∑
3≤p≤y

1

p− 2

 ≤ exp

∑
p≤y

1

p
+O(1)

� log y.

Collecting our estimates, we have shown that∑
n≤x

vΩ(n;y) � kx log y.

But each term with Ω(n; y) ≥ k makes a contribution to the left-hand side
that is at least vk ≥ (2 − 1/k)k = 2k(1 − 1

2k )k � 2k. Thus, the number of

such terms is O( k
2k
x log y). �
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We noted in the introduction that there is no direct analogue for `∗ of the
minimal order result for ϕ expressed in Lemma 3.1. The following result is
a partial workaround.

Lemma 4.7 (assuming GRH). Fix θ with 0 < θ ≤ 1
2 . Suppose that 3 ≤ y ≤

x. The number of integers n ≤ x which have a divisor d > y satisfying

`∗(d) ≤ d/ exp(4(log d)θ)

is Oθ(x log log y/(log y)θ).

Proof. Throughout the argument, we suppress the dependence of implied
contants on θ. We may assume always that y is large, since the lemma is
trivial for bounded values of y. For real t ≥ 1, define the three sets

E1(t) := {e ≤ t : e squarefull},
E2(t) := {e ≤ t : p | e⇒ (p | a or `(p) ≤ p/ log p)},

E3(t) := {e ≤ t : λ(e) ≤ e/ exp((log e)θ)}.

We set e1, e2, and e3 equal to the largest divisors of n from the three sets
E1,E2,E3, respectively. We start by showing that we can assume each of the
following inequalities:

e1 ≤ log y,(4.1)

e2 ≤ exp((log y)θ),(4.2)

e3 ≤ y.(4.3)

It is easy to dispense with (4.1). Indeed, by partial summation and the
well-known estimate #E1(t) �

√
t, the number of n ≤ x with a squarefull

divisor larger than log y is O(x/(log y)1/2). This is acceptable for us, since
θ ≤ 1

2 . To see that we can assume (4.2), note that the number of exceptional
values of n ≤ x is at most

x
∑

e>exp((log y)θ)
e∈E2(x)

1

e
≤ x

(
#E2(x)

x
+

∫ x

exp((log y)θ)

#E2(t)

t2
dt

)

� x

(log x)2
log log x+

x

(log y)θ
log log y � x

(log y)θ
log log y,

where we have used the estimate of Lemma 4.4 for #E2.
It remains to justify the assumption (4.3). We first estimate the counting

function #E3(t). If e is counted by #E3(t), then either e ≤
√
t or λ(e) ≤

e/ exp((log
√
t)θ). Lemma 4.5, with x = t and ∆ = (log

√
t)θ, thus implies

that for large t,

#E3(t)�
√
t+ t exp(−(log t)θ/3)� t/(log t)2.
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Consequently, the number of n ≤ x with a divisor e > y belonging to E3 is

� x
∑
e>y

e∈E3(x)

1

e
≤ x

(
#E3(x)

x
+

∫ x

y

#E3(t)

t2
dt

)
� x

log y
,

which is negligible for us.
In addition to the conditions (4.1)–(4.3), we may also suppose that n does

not have any divisor d > y with Ω(d) ≥ 10 log log d. To see this, suppose for

the sake of contradiction that d is such a divisor. In the case when d > x1/2,
this implies that

Ω(n) ≥ Ω(d) ≥ 10 log log d ≥ 9 log log x.

But the number of n ≤ x with Ω(n) ≥ 9 log log x is O(x/(log x)5) by Lemma
4.6, and this is negligible for us. If d ≤

√
x, we can choose an integer j ≥ 0

with

y2j < d ≤ y2j+1 ≤ x.
Then with z = y2j+1

, we have

Ω(n; z) ≥ Ω(d) ≥ 10 log log d ≥ 10 log log(z1/2) ≥ 9 log log z,

and by Lemma 4.6 again, the number of such n ≤ x is

� x

(log z)5
� 2−5j x

(log y)5
.

Summing over j, we see that the number of possible values of x that can
arise this way is O(x/(log y)5), which is acceptable.

We will show that for all values of n that remain, every divisor d > y of
n satisfies

(4.4) `∗(d) > d/ exp(4(log d)θ).

From the last paragraph, we have

Ω(d) < 10 log log d.

Put d = d1d2q, where d1 is the largest divisor of n from E1 and d2 is the
largest divisor of d/d1 from E2. Then q is squarefree and relatively prime to
a, and `(p) > p/ log p for every prime p dividing q. Moreover,

(4.5) d1 ≤ e1 ≤ log y ≤ log d

and

(4.6) d2 ≤ e2 ≤ exp((log y)θ) ≤ exp((log d)θ).

Since d > y but e3 ≤ y, it follows that d 6∈ E3, and so

(4.7) λ(d) > d/ exp((log d)θ).

Because d = d1d2q with d1, d2, and q supported on disjoint sets of primes,

λ(d) = lcm[λ(d1), λ(d2), λ(q)] ≤ λ(q)d1d2.
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Hence, estimates (4.5), (4.6), and (4.7) yield
(4.8)

λ(q) ≥ λ(d)

d1d2
≥ d

exp((log d)θ)
(log d)−1 exp(−(log d)θ) >

d

exp(3(log d)θ)
.

For each prime p dividing q, write p− 1 = `(p)ι(p), so that ι(p) is the index
of the subgroup of F×p generated by a; from the definition of q,

ι(p) <
p

`(p)
≤ log p ≤ log d

for all p dividing q. Also,

`(q) = lcm
p|q

[`(p)] = lcm
p|q

[
p− 1

ι(p)

]
≥

lcmp|q[p− 1]∏
p|q ι(p)

=
λ(q)∏
p|q ι(p)

.

Thus, from (4.8), the bound ι(p) ≤ log d, and the inequality ω(q) ≤ Ω(d) <
10 log log d,

`(q) ≥ d

exp(3(log d)θ)

(∏
p|q

ι(p)

)−1

≥ d

exp(3(log d)θ)
(log d)−10 log log d >

d

exp(4(log d)θ)
.

Since q is a divisor of d that is coprime to a, we have that `∗(d) ≥ `(q), and
so (4.4) holds. This completes the proof of the lemma. �

We also need a simple observation concerning the behavior of the function
ϕ/`∗ along the divisor lattice (compare with [FPS01, Lemma 2]).

Lemma 4.8. If d and e are natural numbers for which d | e, then ϕ(d)
`∗(d) |

ϕ(e)
`∗(e) .

Proof. By iteration, it suffices to treat the case when e = qd, where q is a
prime. We will prove the equivalent result that, in this case,

(4.9)
`∗(qd)

`∗(d)
| ϕ(qd)

ϕ(d)
.

We can assume that q - a, since otherwise the left-hand ratio is 1 and (4.9)
holds trivially. We consider two cases, depending on whether or not q divides
d. If q - d, then

`∗(qd) = lcm[`(q), `∗(d)] | lcm[q − 1, `∗(d)] | (q − 1)`∗(d).

Hence,

`∗(qd)

`∗(d)
| q − 1 =

ϕ(qd)

ϕ(d)
,
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i.e., (4.9) holds. Now suppose that q | d. Write d = qkd′, where q - d′. Then

`∗(qd) = lcm[`(qk+1), `∗(d′)]. Since a`(q
k) ≡ 1 (mod qk), we have aq`(q

k) ≡ 1
(mod qk+1), and so `(qk+1) | q`(qk). Thus,

`∗(qd) = lcm[`(qk+1), `∗(d′)] | lcm[q`(qk), `∗(d′)] | q lcm[`(qk), `∗(d′)].

Since q lcm[`(qk), `∗(d′)] = q`∗(d), we obtain (4.9) in this case upon noting
that ϕ(qd)/ϕ(d) = q. �

4.3. Completion of the proof of Theorem 1.3. Throughout this sec-
tion, we take a = p, where Fp is the field for which we are proving Theorem
1.3. Thus, `∗(d) denotes the generalized order of p modulo d. We continue
to suppress the dependence of implied constants on a.

Proof of Theorem 1.3. We may always assume that m is larger than
any convenient constant (depending on p), since the theorem is trivial for
bounded values of m.

Case 1: We suppose that

(4.10) 3 ≤ m ≤ x exp(− log x/ log log x).

Suppose that Tn − 1 has a divisor of degree m in Fp[T ]. By Lemma 4.7,
with y = m and θ = 0.079, we may assume that every divisor d of n with
d > m satisfies

`∗(d) > d/ exp(4(log d)0.079);

indeed, the number of exceptional n is O(x log logm/(logm)0.079), which is
small relative to our target upper bound. (Note that 1

13 = 0.0769 . . . <
0.079.) Since m appears as the degree of a divisor of Tn − 1, we can write

(4.11) m =
∑
d|n

`∗(d)ad,

where each ad satisfies 0 ≤ ad ≤ ϕ(d)
`∗(d) . For each d with ad > 0, we have

`∗(d) ≤ m. So, either d ≤ m or

(4.12) d/ exp(4(log d)0.079) < `∗(d) ≤ m.
The inequalities (4.12) force d < M , where

M := m exp(5(logm)0.079).

Indeed, if we were to have d > M , then

m ≥ d/ exp(4(log d)0.079) > M/ exp(4(logM)0.079)

≥ m exp(5(logm)0.079)

exp(5(logm)0.079)
= m,

contradicting (4.12). Of course, if d ≤ m, then it is also the case that d ≤M .
So d ≤M in any case.

Lemma 3.2 allows us to assume that d(n;M) < (logm)2, since the excep-
tional set has size O(x/ logm). Referring back to (4.11), we see that there
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is a divisor d of n with `∗(d)ad > m/(logm)2. But `∗(d)ad ≤ ϕ(d) ≤ d, so
d > m/(logm)2. Therefore, n has a divisor in the interval (m/(logm)2,M ]
and so is counted by H(x,m/(logm)2,M). We estimate the number of such
n ≤ x using Lemmas 3.4 and 3.5. As in the proof of Theorem 1.2, there are
three cases to consider:

• If M ≤
√
x, we apply Lemma 3.4 directly, with y = m/(logm)2

and z = M . Then log(z/y) � (logm)0.079. On the other hand,

log y � logm. Thus, u = log(z/y)
log y � (logm)−0.921. By Lemma 3.4,

H(x, y, z) � xuδ
(

log
2

u

)−3/2

� x

(logm)0.921δ
� x

(logm)0.079
.

• If
√
x < m/(logm)2, Lemma 3.5 gives

H

(
x,

m

(logm)2
,M

)
� H

(
x,

x

M
,

x

m/(logm)2

)
.

Now set y = x/M and z = x
m/(logm)2 . We are assuming that m ≤

x
1− 1

log log x , and so

log y = log
x

M
= log

(
x/m

e5(logm)0.079

)
� log x

log log x
.

Since z/y = M(logm)2/m < exp(6(logm)0.079), we see that

u =
log (z/y)

log y
� (logm)0.079

log x/ log log x
� log log x

(log x)0.921
.

So by Lemma 3.4,

H (x, y, z)� x

(
log log x

(log x)0.921

)δ
(log log x)−3/2

� x

(logm)0.079
.

• If m
(logm)2 ≤

√
x < M , then we certainly have

√
x

exp(6(log
√
x)0.079)

≤
m

(logm)2 and M ≤
√
x exp(6(log x)0.079). Thus,

H

(
x,

m

(logm)2
,M

)
= H

(
x,

m

(logm)2
,
√
x

)
+H

(
x,
√
x,M

)
≤ H

(
x,

√
x

exp(6(log
√
x)0.079)

,
√
x

)
(4.13)

+H
(
x,
√
x,
√
x exp(6(log x)0.079)

)
.

We may now apply Lemmas 3.4 and 3.5 as in the previous two
cases to show that each term on the right-hand side of (4.13) is
O(x/(log x)0.079).
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This completes the proof of the Theorem 1.3 in the case when m satisfies
(4.10).

Case 2: We now suppose instead that

x exp(− log x/ log log x) < m ≤ x.

Let q = P+(n). We will assume that q > exp(2 log x/ log log x); by
Lemma 3.6, this introduces an exceptional set of size O(x/ log x), which
is acceptable for us. Since m appears as the degree of a divisor of Tn − 1,
we may write

(4.14) m =
∑
d|n

ad`
∗(d), where each 0 ≤ ad ≤

ϕ(d)

`∗(d)
.

Now consider (4.14) modulo `∗(q). Whenever q | d, we have `∗(q) | `∗(d). So
mod `∗(q), the only divisors that contribute to the sum in (4.14) are those
d not divisible by q, and all of these d divide r := n/q. Consequently,

(4.15) `∗(q) |

m−∑
d|r

ad`
∗(d)

 .

The right-hand side of relation (4.15) is (cf. (3.8)) at least

m−
∑
d|r

ϕ(d) = m− r

≥ x exp(− log x/ log log x)− x exp(−2 log x/ log log x) > 0.

As in the proof of Case 2 of Theorem 1.2, our strategy will be to count,
for each fixed r, the number of possibilities for q allowed by (4.15). Since q
and r determine n = qr, this will lead to an upper bound on the number of
possible values of n.

To carry this plan out, it is convenient to impose some restrictions on n
additional to the lower bound on q = P+(n) assumed above, namely:

(i) n > x/ log x,
(ii) n satisfies the conditions of Lemma 4.7 with

θ := 0.0579 and y := exp(log x/ log log x).

(iii) Ω(n) ≤ 1.359 log log x.

Clearly, (i) can be assumed excluding O(x/ log x) values of n, which is ac-
ceptable. By Lemma 4.7, the number of n ≤ x which are exceptions to (ii)
is O(x/(log x)0.0578). Finally, by Lemma 3.3, the number of n ≤ x which vi-

olate (iii) is � x/(log x)Q(1.359) � x/(log x)0.0578. (Note that the exponent
2
35 claimed in this case of the theorem satisfies 2

35 = 0.0571 . . . < 0.0578.)
Since r = n/q while q > exp(2 log x/ log log x), the number of possible r

is at most

x/ exp(2 log x/ log log x).
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Given r, the inequalities governing the ad in (4.14) imply that the number
of possibilities for the right-hand side of (4.15) is bounded by

(4.16)
∏
d|r

(1 + ϕ(d)/`∗(d)) .

By condition (ii) above, we have (using n > x/ log x > y)

`∗(n) > n/ exp(4(log n)θ).

So by Lemma 4.8, the product (4.16) is bounded above by(
1 +

ϕ(n)

`∗(n)

)d(n)

≤
(

1 + exp(4(log n)θ)
)d(n)

≤ exp(O((log x)θ2Ω(n))).

By condition (iii), 2Ω(n) ≤ (log x)1.359 log 2, while 1.359 log 2 + θ < 0.9999. So
given r, the right-hand side of (4.15) is determined in at most

exp((log x)0.9999)

ways, for large x. Since the right-hand side of (4.15) is an integer in [1, x],
once it is fixed, the number of possibilities for its divisor `∗(q) is at most

exp(log x/ log log x).

(We are using again the maximal order of the divisor function.) Once more
invoking condition (ii), we have (since q > y2 > y)

q − 1

`∗(q)
<

q

`∗(q)
< exp(4(log q)θ) < exp(4(log x)θ);

since the ratio (q− 1)/`∗(q) is integral, we see that given `∗(q), there are at
most exp(4(log x)θ) possibilities for q.

Piecing everything together (determining successively r, the right-hand
side of (4.15), `∗(q), and finally q), the number of possibilities for n = rq is
bounded above by

x

exp
(

2 log x
log log x

) · exp((log x)0.9999) · exp

(
log x

log log x

)
· exp(4(log x)θ)

<
x

exp
(

1
2

log x
log log x

) < x

log x
,

which is negligible. This completes the proof of the second case of the
theorem, with the exponent 2

35 = 0.0571 . . . replaced by the larger number
0.0578. �
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5. Concluding remarks: variations on the Q-practical
numbers

Srinivasan’s practical numbers have a natural dual, namely, those n for
which each m ∈ [0, σ(n)] has at most one representation as a sum of distinct
divisors of n. Call these efficient numbers. Using the theory of sets of
multiples, Erdős showed [Erd70, Theorem 2] that the set of efficient numbers
possesses a positive asymptotic density.

On the polynomial side, we define n to be Q-efficient if Tn − 1 has at
most one monic divisor in Q[T ] of each degree m ∈ [0, n]. Erdős’s argument,
based on the theory of sets of multiples, may be adapted to show that the
Q-efficient numbers also have positive density. Indeed, this is immediate
from the methods of [Erd70] and the following lemma.

Lemma 5.1. If S is the set of natural numbers n satisfying

(i) n is not Q-efficient,
(ii) if d | n and d < n, then d is Q-efficient,
(iii) Ω(n) < 1.1 log log (3n),

then the sum of the reciprocals of the members of S converges.

Proof. The proof is similar to Erdős’s argument and to our own proof of
Case 2 of Theorem 1.2, so we provide only a sketch. By partial summation,
it suffices to show that the counting function of S is O(x/(log x)2) for large
x. Suppose that n ∈ S ∩ [1, x]. Since n is not Q-efficient, there are two
monic divisors of Tn − 1 of the same degree, and hence there is a nontrivial
solution to the equation

(5.1)
∑
d|n

εdϕ(d) = 0, where each εd ∈ {−1, 0, 1}.

(Here nontrivial means that not all εd = 0.) Put p := P+(n). We can
assume that

p > z2, where z := exp(log x/ log log x),

since the number of exceptional n ≤ x is O(x/(log x)2) by Lemma 3.6. We
can also assume that p divides n only to the first power. Otherwise, n has
squarefull part at least z4, and the number of such n ≤ x is O(x/z2), which
is negligible.

Consider (5.1) modulo p − 1. Whenever p | d, one has that p − 1 | ϕ(d).
So putting r := n/p, it follows that

(5.2) p− 1 |
∑
d|r

εdϕ(d).

We claim that the right-hand side of (5.2) is a nonzero integer. If some εd
appearing in (5.2) is nonzero, this is clear: In that case, the vanishing of the
right-hand side of (5.2) implies that T r − 1 has two monic divisors of the
same degree, contradicting condition (ii) in the definition of S . But if all
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of the εd in (5.2) vanish, then the original sequence of εd appearing in (5.1)
is supported on multiples of p. In that case, after dividing (5.1) through by
p− 1, we again obtain a contradiction to the Q-efficiency of r = n/p.

Now we fix r and count the number of p allowed by (5.2). Mimicking
the end of the proof of Case 2 of Theorem 1.2, we find that the number of
possible n is at most

x

exp(2 log x/ log log x)
· 221.1 log log (3x) · exp(log x/ log log x)

< x/ exp(
1

2
log x/ log log x),

once x is large. (We use here that 1.1 < 1/ log 2.) This last quantity is
certainly O(x/(log x)2). �

One might ask for both efficiency and practicality simultaneously, i.e.,
for numbers n where each m ∈ [0, σ(n)] has precisely one representation as
a sum of distinct divisors of n. The powers of 2 have this property, and
it is not so hard to show that these are all such n. The answer to the
analogous polynomial problem is perhaps more unexpected. Define a Q-
optimal number as an n for which Tn− 1 has precisely one monic divisor of
each degree m ∈ [0, n]. In the remainder of this subsection, we classify the
Q-optimal numbers.

The following lemma is due to the second author [Tho12a, Lemma 4.1].

Lemma 5.2. Suppose that n is Q-practical. If p is a prime not dividing
n, then pn is Q-practical if and only if p ≤ n + 2. Moreover, pkM is Q-
practical, where k ≥ 2, if and only if p ≤ n+ 1.

Let Fm := 22m + 1 represent the mth Fermat number. Below, we use the
well-known result that if p is an odd prime for which p− 1 is a power of 2,
then p = Fm for some m (see [HW08, p. 18]); such a prime p is called a
Fermat prime.

Proposition 5.3. Let k be a nonnegative integer. Suppose that all of
F0, F1, . . . , Fk−1 are prime. Then

(5.3) n := F0F1 · · ·Fk−1

is a Q-optimal number with k distinct prime factors. (We understand that
n = 1 if k = 0.) Conversely, if there is any Q-optimal number with k
distinct prime factors, then F0, . . . , Fk−1 are all prime, and n is given by
(5.3).

Proof (sufficiency). Suppose that all of F0, . . . , Fk−1 are prime, and define
n by (5.3). The Q-practicality of n follows immediately from Lemma 5.2
and the identity

F0F1 · · ·Fj−1 + 2 = (220 − 1)
(

(220
+ 1)(221

+ 1) · · · (22j−1
+ 1)

)
+ 2

= (22j − 1) + 2 = Fj ,
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valid for all j ≥ 0 (provided one interprets the empty product as 1). More-
over, the identity (1.1) and the irreducibility of the cyclotomic polynomials

together imply that the number of monic divisors of Tn − 1 is 2d(n) = 22k ,
while the number of integers in [0, n] is precisely

n+ 1 = F0 · · ·Fk−1 + 1 = Fk − 1 = 22k .

As these two numbers agree, the Q-practicality of n implies the Q-efficiency
of n (by the pigeonhole principle). Hence, n is Q-optimal. �

Proof (necessity). This is clear if k = 0, so assume that k ≥ 1. The
key observation is that for each Q-optimal number n, we have the formal
identity

(5.4)
∏
d|n

(1 + Tϕ(d)) =
n∑

m=0

Tm =
1− Tn+1

1− T
.

Evaluating (5.4) at T = 1, we find that 2D = n+ 1, so that n = 2D − 1. In
particular, n is odd. Feeding the equality n = 2D − 1 back into (5.4), we
find that∏

d|N

(1 + Tϕ(D)) =
1− T 2D

1− T

= (1 + T )(1 + T 2)(1 + T 4) · · · (1 + T 2D−1
).

In both sides of this identity, we have a product of D nonconstant polyno-
mials. Moreover, each of the D right-hand factors is irreducible over Q (in

fact, 1 + T 2j−1
= Φ2j (T )). It follows from uniqueness of factorization in

Q[T ] that if one arranges the list of terms ϕ(d), where d | n, in increasing
order, one obtains the sequence 〈1, 2, 4, . . . , 2D−1〉.

The number n must be squarefree. Otherwise, p2 | n for some p ≥ 3 and
so ϕ(p2) = p(p− 1) is divisible by p, contradicting that ϕ(p2) is a power of
2. So we may write

n = p1 · · · pk, where p1 < p2 < · · · < pk.

Since each ϕ(d) is a power of 2, we have in particular that each pi−1 = ϕ(pi)
is a power of 2, and so pi is a Fermat prime. Hence, the prime factorization
of n can be rewritten in the form

n = Fi1 · · ·Fik , where 0 ≤ i1 < i2 < · · · < ik.

To complete the proof, we have to show that the sequence 〈i1, i2, . . . , ik〉
coincides with the sequence 〈0, 1, . . . , k − 1〉.

We claim that Tn−1 has a divisor of degree m := Fi1Fi2 · · ·Fik−1
+ 1. To

see this, it is sufficient (since n is Q-practical) to show that m ≤ n. Clearly,

(5.5) m+ 1 ≤ F0F1F2 · · ·Fik−1
+ 2 = Fik−1+1.
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Since ik ≥ ik−1 + 1, we have m+ 1 ≤ Fik ≤ n. So m < n. Write m as a sum
of distinct terms ϕ(d), where d | n. If every d involved in this representation
divides Fi1 · · ·Fik−1

= n/Fik , then m ≤
∑

d|Fi1 ···Fik−1
ϕ(d) = Fi1 · · ·Fik−1

,

which is not the case. So some d in the representation is divisible by Fik ,
and hence Fik − 1 ≤ ϕ(d) ≤ m. Hence,

Fik ≤ m+ 1.

But from (5.5), we also have

m+ 1 ≤ Fik−1+1 ≤ Fik .

It follows that ik = ik−1 + 1 and that equality holds throughout (5.5). The
latter forces the (k−1)-tuple 〈i1, i2, . . . , ik−1〉 to coincide with the (ik−1 +1)-
tuple 〈0, 1, 2, . . . , ik−1〉, so that 〈i1, . . . , ik−1〉 = 〈0, 1, . . . , k − 2〉. Since ik =
ik−1 + 1, we conclude that 〈i1, i2, . . . , ik〉 = 〈0, 1, . . . , k − 1〉, as was to be
shown. �

Corollary 5.4. There are precisely six Q-optimal numbers, namely 22i − 1
for i = 0, 1, . . . , 5.

Proof. Since F0, F1, . . . , F4 are prime while F5 = 641 · 6700417, Propo-
sition 5.3 shows that the Q-optimal numbers are precisely the numbers

F0F1 · · ·Fi−1 = 22i − 1 for i = 0, 1, . . . , 5. �
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