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For Helmut Maier on the occasion of his seventieth birthday

Abstract Cyclotomic polynomials are a family of irreducible polynomials with in-
teger coefficients whose roots lie on the unit circle. They have been studied since at
least the time of Gauss. A number of papers from the last 150 years have focused on
the coefficients of cyclotomic polynomials. In this survey article, we discuss what
is currently known about the maximal coefficients (in absolute value) of cyclotomic
polynomials.

1 Introduction

Cyclotomic polynomials are a seemingly simple family of polynomials that arise
in many areas of mathematics. The name cyclotomic is derived from the Greek
words κύκλος, meaning “circle,” and τόμος, a “part which is cut.” One obtains
the roots of cyclotomic polynomials by cutting the unit circle into equal parts. This
results in roots of the form

ζ
k = e2πik/n = cos

(
2πik

n

)
+ isin

(
2πik

n

)
,

for k = 0, ...,n−1. A root is called primitive if it generates all of the other roots, i.e.,
if gcd(n,k) = 1. We define the nth cyclotomic polynomial by taking the product of
all of the nth primitive roots of unity:
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Φn(x) = ∏
1≤k≤n

gcd(n,k)=1

(x− e2πik/n).

By taking the product over all of the nth roots (including the non-primitive roots),
we obtain the following useful identity:

xn−1 = ∏
d|n

Φd(x).

Although the cyclotomic polynomials are formed by taking products of complex
roots, it turns out that cyclotomic polynomials all have integer coefficients. It fol-
lows immediately from the definition of the Euler totient function, and the definition
of the nth cyclotomic polynomial, that Φn(x) has degree ϕ(n). Moreover, the cyclo-
tomic polynomials are all irreducible in Z[x].

The fact that the cyclotomic polynomials are irreducible is nontrivial to show,
and has a long history. It was proven in the case where n is prime by Gauss (1801),
Kronecker (1845), Schönemann (1846), and Eisenstein (1850). General proofs for
composite n were later given by Dedekind (1857), Landau (1929), and Schur (1929).
These proofs have been collected by Weintraub in [57]. We may therefore conclude
that the irreducible divisors of xn−1 in Z[x] are precisely the dth cyclotomic poly-
nomials, for values of d dividing n. As a result, every divisor of xn− 1 in Z[x] is
a product of distinct cyclotomic polynomials. Moreover, every product of distinct
cyclotomic polynomials is a divisor of xn−1 for some positive integer n.

Cyclotomic polynomials have been a subject of study since at least 1798. In
that year, Carl Friedrich Gauss wrote his Disquisitiones Arithmeticae, in which the
final chapter discusses cyclotomic polynomials in the context of determining which
regular polygons can be constructed using a compass and straightedge [23]. Since
then, we have seen the cyclotomic polynomials appear in many other contexts.

In the 19th century, cyclotomic polynomials turned out to be important objects
in Galois theory. This is perhaps unsurprising, since Galois theory is often used to
prove that certain geometric objects are not constructible using a straightedge and
compass. Due to their central role in Galois theory, cyclotomic polynomials now
feature prominently in the mathematics curriculum for bachelor’s students. The nth

cyclotomic polynomial is the minimal polynomial for e2πi/n. The cyclotomic poly-
nomials provide a simple illustration of Galois theory: the automorphisms sending
a fixed primitive nth root of unity to other primitive nth roots of unity are in bijection
with the elements of (Z/nZ)×.

In the 20th century, we saw that cyclotomic polynomials and their products form
an infinite family of polynomials with trivial Mahler measure [48]. In the 21st cen-
tury, cyclotomic polynomials have even arisen in lattice-based cryptography (see,
for example, [18], [37], [44], [25]).

The focus of this survey article will be on the coefficients of cyclotomic polyno-
mials. Let us first examine some concrete examples of cyclotomic polynomials.
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Φ1(x) = x−1
Φ2(x) = x+1

Φ3(x) = x2 + x+1

Φ4(x) = x2 +1

Φ5(x) = x4 + x3 + x2 + x+1

Φ6(x) = x2− x+1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+1

Φ8(x) = x4 +1

Φ9(x) = x6 + x3 +1

Φ10(x) = x4− x3 + x2− x+1

Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+1

Φ12(x) = x4− x2 +1

At first glance, it appears that all coefficients of cyclotomic polynomials belong
to the set {−1,0,1}. Indeed, the first 104 cyclotomic polynomials all have this prop-
erty. In 1883, Migotti [42] showed that Φ105(x) is the first cyclotomic polynomial
to have a new coefficient:

Φ105(x) = x48 + x47 + x46− x43− x42−2x41− x40− x39 + x36 + x35

+ x34 + x32 + x31− x28− x26− x24− x22− x20 + x17 + x16 + x15

+ x14 + x13 + x12− x9− x8−2x7− x6− x5 + x2 + x+1.

The fact that the new coefficient appearing in Φ105(x) has absolute value 2 leads
to the natural question, “How do the coefficients grow (in absolute value) as n
increases?” At the same time, the wealth of examples of cyclotomic polynomials
with only ±1,0 as coefficients leads to a different natural question: “Are there infi-
nite families of cyclotomic polynomials with coefficients only coming from the set
{−1,0,1}?” It is easy to see that Φp(x) = ∑

p−1
i=0 xi for every prime p, so all of its

coefficients are +1. We will exclude these trivial cases from our discussion. Instead,
we will look at those Φn(x) where n has at least two prime factors.

The fact that Φ105(x) is the first cyclotomic polynomial with nontrivial coeffi-
cients is not a lucky accident: 105 = 3 ·5 ·7, a product of three distinct odd primes.
In the same paper in which Migotti described his observation about the coefficients
of Φ105(x), he also proved that, if n = pq with p and q distinct odd primes, then
all of the coefficients of Φn(x) lie in the set {−1,0,1}. In fact, the values of the
coefficients of Φpq(x) can be described completely explicitly for any pair of primes
p and q (see, for example, Theorem 2.3 in [52]). As we saw in the examples above,
the height of a cyclotomic polynomial Φn(x) does not increase if we multiply n by
powers of 2. Similarly, the height is not impacted by multiplying n by extra copies
of primes that already appear in its factorization. As a result, studying heights of
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cyclotomic polynomials amounts to studying heights of those Φn(x) for which n is
odd and squarefree. Once we restrict our view to only the cyclotomic polynomi-
als Φn(x) where n is a product of at least three distinct odd primes, it is clear that
Φ105(x) was the first cyclotomic polynomial that ever had any chance of having a
nontrivial height.

With our motivating questions in mind, we will now formally define our main
objects of study.

Definition 1. The height of Φn(x) is the largest coefficient in absolute value.

We shall denote the height of Φn(x) by A(n) or H(Φn(x)), depending on the
context. As we saw above, the complexity of the coefficient behaviour is a function
of the number of distinct odd prime factors of n. As a result, it makes sense to
measure the height in terms of ω(n), the number of distinct prime factors of n,
rather than comparing it directly with n.

Since the maximal coefficient in absolute value of Φn(x) is called its height, it
seems logical to call a cyclotomic polynomial without any height “flat.” In other
words:

Definition 2. A cyclotomic polynomial is flat if it has height 1.

In Section 2, we will discuss what is known about flat cyclotomic polynomials.
In Section 3, we will look at extreme behaviour versus typical behaviour of the
cyclotomic polynomial height function. In Section 4, we will examine a related
function, B(n), which looks at the maximal height over all divisors of xn− 1. In
Section 5, we conclude by considering the question of whether every positive integer
appears as a height of some cyclotomic polynomial. This question is currently open.
Nevertheless, some progress has been made in this direction, and we will discuss
the current state-of-affairs.

2 Flat cyclotomic polynomials

When discussing flat cyclotomic polynomials Φn(x), it often makes sense to cat-
egorize them in terms of the factorization of n. When n has two distinct odd prime
factors, we will refer to Φn(x) as a binary cyclotomic polynomial, or a cyclotomic
polynomial of order 2. Likewise, when p,q,r are distinct odd primes, we will call
Φpqr(x) a ternary cyclotomic polynomial, or a cyclotomic polynomial of order three.
Of course, these notions can be generalized to cyclotomic polynomials with higher
orders. However, as we will see, much less is known about cyclotomic polynomials
with orders greater than three.

As noted in Section 1, Migotti showed in 1883 that all cyclotomic polynomials
of order two are flat. The situation already becomes substantially trickier for cyclo-
tomic polynomials of order 3. While a number of infinite families of flat cyclotomic
polynomials of order three have been constructed, there is still no complete classi-
fication of all flat cyclotomic polynomials of order three. The first to confirm the
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existence of infinite families of flat ternary cyclotomic polynomials was Beiter [13],
who showed that there are infinitely many primes 3< p< q such that Φ3pq(x) is flat.
Bachman [2] constructed additional infinite families of flat cyclotomic polynomials
of order three in 2006. He proved that, for any prime p > 5, there exist infinitely
many pairs of primes (q,r) such that Φpqr(x) is flat. Kaplan [29] later improved
this by proving that for any odd primes p and q, there are infinitely many primes r
such that Φpqr(x) is flat. In particular, he showed that Φpqr(x) is flat for all primes
p < q < r with r ≡±1 (mod pq).

Kaplan [30] was also the first to prove that there are infinitely many flat cyclo-
tomic polynomials of order four. Flat cyclotomic polynomials seem to get sparser
as their order increases. As an example, computations of Arnold and Monagan [1]
show that there are only 1389 squarefree integers n with four distinct odd prime
divisors that generate flat Φn(x) for n < 3 ·108. A quick computation in Sage shows
that the number of squarefree integers with four distinct odd prime divisors up to
3 ·108 is 18561166, so only about 0.007% of these integers generate flat cyclotomic
polynomials.

No flat cyclotomic polynomials of order five have been found at this point, and it
has been conjectured that none exist.

3 Cyclotomic polynomials with nontrivial heights

In contrast to flat cyclotomic polynomials, there are cyclotomic polynomials that
can have arbitrarily large heights. This was already known to Schur, who mentioned
it in an unpublished letter to Landau in 1931 (see [34]). Let us begin by examining
some data on the first instances of each positive integer as a height of a cyclotomic
polynomial:
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A First n with H(Φn(x)) = A ω(n)
2 105 3
3 385 3
4 1365 4
5 1785 4
6 2805 4
7 3135 4
8 6545 4
9 10465 4
10 11305 4
11 17255 4
12 20615 4
13 26565 5
14 40755 5
15 106743 5
16 171717 5
17 255255 6
18 279565 5
19 327845 5
20 707455 5

Here, H(Φn(x)) denotes the height of the nth cyclotomic polynomial, and ω(n)
denotes the number of distinct prime factors of n. The data in the middle column
comes from OEIS Entry A160340 (see [60]). This table illustrates the relationship
between cyclotomic polynomial heights A(n) and the number of prime factors of the
corresponding integers n. In our discussion of A(n), we will distinguish between sev-
eral settings: cyclotomic polynomials Φn(x) where n has a specific structure (e.g.,
n is a product of three distinct odd primes) versus general results that hold for any
cyclotomic polynomials. We will also look at the extreme behaviour of A(n) (i.e.,
bounds that hold for any n) versus the typical behaviour of A(n) (i.e., bounds that
hold for almost all n).

3.1 Ternary cyclotomic polynomials

There has been a great deal of literature on bounding the magnitude of the largest
coefficient of ternary cyclotomic polynomials. The earliest work in this area is due
to Bang [6], who proved in 1895 that the height of Φpqr(x) is at most p− 1. This
bound was subsequently improved independently by Beiter [11] and Bloom [14] in
1968, who obtained an upper bound of (p+1)/2 in the special case where q or r is
congruent to ±1 (mod p). Beiter, who was a Catholic nun teaching mathematics at
a high school, also conjectured in [12] that this is the best possible upper bound that
holds in general. This became known as the Sister Beiter Conjecture.
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Subsequent work by Beiter [12], Möller [43] and Bachman [2] provided a great
deal of evidence towards Beiter’s conjecture. In 2003, Bachman [2] provided a sec-
ond infinite family of examples that support Beiter’s conjecture, namely the cyclo-
tomic polynomials Φpqr(x) with q or r congruent to ±2 (mod p). In 2009, Kaplan
[31] obtained a periodicity result; he showed that, if s > q is a prime with s ≡ ±r
(mod pq), then A(pqr) = A(pqs). In the same paper, he proved a technical lemma
that explicitly relates the coefficients of Φpqr(x) to those of Φpq(x).

Gallott and Moree [20] used Kaplan’s lemma in order to construct an infinite
family of counterexamples to Beiter’s conjecture. They showed that

A(pqr)> (p+1)/2

holds for each p ≥ 11 and for infinitely many values of q and r. In the same paper,
they devised a “corrected” version of Beiter’s conjecture.

Conjecture 1 (Corrected Sister Beiter Conjecture). Let p < q < r be distinct odd
primes. Then A(pqr)≤ 2

3 p.

Gallot and Moree [20] showed that there exist triples p < q < r with p arbitrarily
large for which A(pqr) > ( 2

3 − ε)p for ε > 0, which means that the conjectured
upper bound is optimal if it is true. In 2010, Bzdȩga [9] obtained density results
on polynomials Φpqr(x) with A(pqr) ≤ cp. In particular, with p fixed, he showed
that at least 25

27 +O( 1
p ) of the polynomials Φpqr(x) satisfy the conjectured bound of

Gallot and Moree. More recently, Luca, Moree, Osburn, Saad Eddin, and Sedunova
[36] showed in 2019 that the corrected version of Beiter’s conjecture holds for at
least 25/27 of the ternary integers. In 2023, Juran, Moree, Riekert, Schmitz, and
Völlmecke [27] gave a proof of the Corrected Sister Beiter Conjecture. Their proof
fleshes out an approach that Zhao and Zhang [59] gave back in 2009 that turned out
to be correct. Unfortunately, the paper of Zhao and Zhang was never accepted for
publication, likely because some of the arguments were difficult to follow. With the
new details provided by Juran et al in [27], it is finally clear that the Corrected Sister
Beiter Conjecture can now be called the Corrected Sister Beiter Theorem.

For cyclotomic polynomials with orders larger than three, not much is currently
known. Felsch and Schmidt [19] and Justin [28] independently showed in 1967/8
that for p1 < · · · < ps odd primes, A(p1, ..., ps) has an upper bound that does not
depend on ps−1 or ps (in other words, the two largest prime factors of n do not
affect the upper bound for A(n)). Bloom [14] showed in 1968 that

A(pqrs)≤ p(p−1)(pq−1),

for odd primes p < q < r < s. This was improved by Bzdȩga in 2012, who showed
that

A(pqrs)≤ 3
4

p3q.

He was also able to obtain upper bounds for fifth- and sixth-order cyclotomic poly-
nomials, where n factors into odd primes p < q < r < s < t < u. He showed
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A(pqrst)≤ 135
512

p7q3r, A(pqrstu)≤ 18225
262144

p15q7r3s.

It is unclear whether these bounds are anywhere close to being sharp.

3.2 Cyclotomic polynomials without restrictions on n

Instead of restricting ourselves to heights of ternary (or quaternary) cyclotomic
polynomials, we can consider heights of Φn(x) for integers n with an arbitrary but
fixed number of prime factors. Erdős [17] showed that the height function, A(n), is
not bounded above by any polynomial function of n. In other words, for any constant
c > 0, there exists an integer n such that A(n)> nc.

Bateman [7] was the first to obtain a bound for Φn(x) with n having k distinct
odd prime factors, where k ranges over all positive integers. He gave a simple ar-
gument in 1949 which showed that the height of Φn(x) is at most n2k−1

. There
were a number of improvements on Bateman’s result in papers of Vaughan [54]
and Bateman, Pomerance, and Vaughan [8], the latter of which gives an upper

bound of n
2k−1

k −1. In the same paper, Bateman, Pomerance and Vaughan show that

A(n)≥ n
2k−1

k −1/(5logn)2k−1
holds for infinitely many n with exactly k distinct odd

prime factors. Moreover, under the assumption of the prime k-tuples conjecture,

they show that for each k there exists a constant ck such that A(n)≥ ckn
2k−1

k −1 holds
for infinitely many n with exactly k distinct odd prime factors. We can re-state these
results without the dependence on k by using the fact that the maximal order of ω(n)
is logn

log logn . This yields an upper bound of

A(n)≤ en(log2+o(1))/ log logn

that holds for all positive integers n, as well as a lower bound of

A(n)≥ en(log2+o(1))/ log logn

that holds for infinitely many values of n. In other words, if the prime k-tuples
conjecture is true, their result is best possible.

3.3 Extreme versus typical heights

Maier showed in a pair of papers [38] and [40] that stronger results can be ob-
tained for “typical” n; that is, for all n except for an exceptional set with asymptotic
density 0. In particular, let ψ(n),ε(n) be functions defined for all positive integers
such that ψ(n)→ ∞ and ε(n)→ 0 as n→ ∞. Maier proved that the inequalities
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nε(n) ≤ A(n)≤ nψ(n)

hold for almost all n. This settled a longstanding question of Erdős [52].
Maier’s upper bound was published in 1990, while the lower bound came only in

1996. In the intervening time, Maier showed that his upper bound was best possible
in [39]. Namely, he showed that for any positive constant C, it is the case that

A(n)≥ nC

on a set of positive lower density. Maier’s lower bound was improved several times
over the next decade, first by Maier himself. Recall that A(n) is actually a function of
ω(n), and that ω(n) has average order log logn. Maier showed in [41] that for every
constant C > 2/ log2, if EC is the set of squarefree integers n with ω(n)≥C log logn,
then for every ε > 0, the inequality

A(n)> exp((logn)(C log2)/2−ε)

holds for almost all n ∈ EC. This result was improved in 2004 by Konyagin, Maier,
and Wirsing [32], who showed that the result holds, in fact, for all n with ω(n) ≥
C log logn. In other words, A(n) is large when n has more than the average number
of distinct prime factors.

4 A generalization: from A(n) to B(n)

So far, we have only been considering heights of cyclotomic polynomials, but
we can broaden our gaze to other families of (related) polynomials. If f (x) is any
polynomial with integer coefficients, let H( f ) denote its maximum coefficient in
absolute value. We can then define B(n) = max{H( f ) : f (x) | xn−1, f (x) ∈ Z[x]}.
In particular, A(n) ≤ B(n) since Φn(x) divides xn − 1 and B(n) is the maximum
height over all divisors of xn− 1. In general, much less is known about B(n) than
A(n). The first result concerning B(n) is due to Justin [28], who showed in 1969 that
B(n) has an upper bound that does not depend on the size of the largest prime factor
of n. In 2005, Pomerance and Ryan [45] proved that as n→ ∞,

logB(n)≤ n(log3+o(1))/ log logn.

They also showed that this inequality can be reversed for infinitely many n. In
2009, Kaplan [31] gave a formula for B(n) when n = p2q, showing that B(p2q) =
min{p2,q}. He also gave upper and lower bounds for B(pqr), showing that

1
3
(3p2q− p3 +7p−6)≤ B(pqr)≤ p2q2.

Decker and Moree [15] took Kaplan’s work a step further in 2013, determining
which coefficients occur for each divisor of xn− 1 when n = p2q. In 2010, Ryan,
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Ward, and Ward [46] did some computations for B(n) and derived a number of
conjectures about B(n) for n with certain specific shapes (e.g., n = pqb) based on
the data that they generated. Some of their conjectures were subsequently proven by
Wang [56] in 2015.

As in the previous section, we can also step away from integers n with specific
forms, and instead consider B(n) for any positive integer n. In 2009, Kaplan [31]
showed that if n = pe1

1 · · · p
ek
k where p1 < · · ·< pk and e1, ...,ek ≥ 1 then, for k ≥ 2,

we have

B(n)<
k−1

∏
i=1

p4·3k−2·E−ei
i ,

where E := ∏
k
j=1 e j. Kaplan’s upper bound was later improved by Zhang [58] in

2019, who showed that

B(n)< (2/5)∏
k
i=2 ei

k−1

∏
i=1

p4·3k−2E−ei
i .

A less-precise but perhaps more palatable upper bound was given by Bzdȩga [10]
in 2012, who showed that

B(n)< (C+o(1))3k
n(3

k−1)/(2k)−1

as k→ ∞, where C is an effectively computable constant less than 1. On the other
hand, lower bounds were given by Ryan, Ward, and Ward [46], who showed that

B(n)≥min{pe1
1 , ..., pek

k }.

One can also ask about the “typical” behaviour of B(n), as Maier did with A(n).
In that direction, we have the following theorem of Thompson [53]. Let τ(n) denote
the count of divisors function, and let ψ(n) be a function defined for all positive
integers such that ψ(n)→ ∞ as n→ ∞. Then B(n)≤ nτ(n)ψ(n) for almost all n, i.e.,
for all n except for a set with asymptotic density 0. It is not yet known whether this
upper bound for B(n) is best possible.

5 Open questions

In spite of the preponderance of research on heights of cyclotomic polynomials,
there is a great deal that is still not known. For example, it is natural to ask whether
every positive integer can be a height of a cyclotomic polynomial. In other words,
for any positive integer h, is there a positive integer n such that A(n) = h? We still
do not know the answer to this question, although there is a great deal of evidence
that suggests that the answer is “yes.”

What we do know is that every positive integer is a coefficient of some cyclo-
tomic polynomial, thanks to a 1987 paper of Suzuki [51]. This property even holds
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if we restrict ourselves to the set of ternary cyclotomic polynomials, as Bachman
showed in [3]. Moreover, we know that, if there are any exceptions, these excep-
tions live in a subset of the integers with asymptotic density zero. In particular,
Kosyak, Moree, Sofos and Zhang [33] showed in 2021 that as x goes to infinity, the
number of “bad” h≤ x is Oε(x3/5+ε). Their work uses deep recent results about the
distribution of primes. Using a more elementary approach, Bachman, Bao, and Wu
[5] showed in 2023 that, for any positive integer h, either h or h+ 1 is a height of
some ternary cyclotomic polynomial.

A number of open questions are also alluded to in previous sections of this survey.
We summarize them here for convenience. We saw in Section 2 that we still do not
have a complete classification of flat ternary cyclotomic polynomials. Even less is
known about cyclotomic polynomials of order four and higher. In particular, we
still do not know whether there are any flat cyclotomic polynomials of order five.
We also (likely) do not have good upper bounds for A(n) when Φn(x) has order
four, five, six, etc. The function B(n), which is the maximal height over all products
of cyclotomic polynomials dividing xn− 1, remains mysterious, in part because it
becomes difficult to compute rather quickly.

There are many other directions that can be taken with cyclotomic polynomials
that were not discussed in this survey. For example, one can also study the values
that cyclotomic polynomials take at different inputs. On the other hand, there are a
number of papers that look at inverse cyclotomic polynomials, where the nth inverse
cyclotomic polynomial is obtained by taking xn−1 and dividing it by Φn(x). Inverse
cyclotomic polynomials have also given rise to cryptographic applications (see, for
example, [26], [16]). In addition, there are papers that focus on the values that the
kth coefficient of Φn(x) can assume as n ranges over the positive integers, or on
cyclotomic polynomials with neighbouring terms that jump by at most one (the so-
called “jump one” property). See, for example, [22], [24], [21]. For other surveys on
cyclotomic polynomials, see the 1979 survey by Lenstra [35], the 1989 survey by
Vaughan [55], the 2000 survey by Thangadurai [52], and the 2022 survey by Sanna
[47].
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