Prime gaps

Lola Thompson

Oberlin College \& Max Planck Institute for Mathematics

December 12, 2016

Bounded gaps between primes: a brief history

Prime gaps

Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Conjecture (de Polignac, 1849)

For even integers h, there are infinitely many pairs of primes $p, p+h$.

We refer to such values of h as de Polignac numbers.

Natural questions about de Polignac numbers

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Some natural questions arise:

Natural questions about de Polignac numbers

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Some natural questions arise:

- What proportion of even integers are de Polignac numbers?

Natural questions about de Polignac numbers

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Some natural questions arise:

- What proportion of even integers are de Polignac numbers?
- Are there infinitely many de Polignac numbers?

Natural questions about de Polignac numbers

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Some natural questions arise:

- What proportion of even integers are de Polignac numbers?
- Are there infinitely many de Polignac numbers?
- What is the smallest de Polignac number?

Natural questions about de Polignac numbers

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Some natural questions arise:

- What proportion of even integers are de Polignac numbers?
- Are there infinitely many de Polignac numbers?
- What is the smallest de Polignac number?
- Do de Polignac numbers even exist???

Natural questions about de Polignac numbers

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Some natural questions arise:

- What proportion of even integers are de Polignac numbers?
- Are there infinitely many de Polignac numbers?
- What is the smallest de Polignac number?
- Do de Polignac numbers even exist???

Natural questions about de Polignac numbers

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Some natural questions arise:

- What proportion of even integers are de Polignac numbers?
- Are there infinitely many de Polignac numbers?
- What is the smallest de Polignac number?
- Do de Polignac numbers even exist???

It is widely conjectured that $h=2$ is the smallest de Polignac number, i.e., that there are infinitely many pairs of twin primes.

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes
$10 / 74$

A (crude) heuristic approach

A heuristic lemma

Prime gaps

Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Chebyshev, 1852)

Approximately $\frac{1}{\log x}$ of the integers in $[1, x]$ are prime.

A crude heuristic approach

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

For the integers in $[1, x]$:

A crude heuristic approach

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

For the integers in $[1, x]$:

- $P(p$ is prime $)=\frac{1}{\log x}$

A crude heuristic approach

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

For the integers in $[1, x]$:

- $P(p$ is prime $)=\frac{1}{\log x}$
- $P(p+2$ is prime $)=\frac{1}{\log x}$

A crude heuristic approach

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

For the integers in $[1, x]$:

- $P(p$ is prime $)=\frac{1}{\log x}$
- $P(p+2$ is prime $)=\frac{1}{\log x}$

If these two events are independent, then

$$
\begin{aligned}
P(p \text { and } p+2 \text { prime }) & =P(p \text { prime }) \cdot P(p+2 \text { prime }) \\
& =\frac{1}{\log x} \cdot \frac{1}{\log x} \\
& =\left(\frac{1}{\log x}\right)^{2} .
\end{aligned}
$$

A crude heuristic approach

Prime gaps

Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Thus, we'd expect

$$
\#\{p \leq x: p \text { and } p+2 \text { prime }\} \approx \frac{x}{(\log x)^{2}}
$$

Since $\lim _{x \rightarrow \infty} \frac{x}{(\log x)^{2}}=\infty$, this gives us reason to believe that there are infinitely many pairs of twin primes!

A problem with our crude heuristic

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Problem: The events " p prime" and " $p+2$ prime" aren't independent!

A problem with our crude heuristic

Prime gaps

Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Problem: The events " p prime" and " $p+2$ prime" aren't independent!

One could show (using an analogous argument) that

$$
\#\{p \leq x: p \text { and } p+1 \text { prime }\} \approx \frac{x}{(\log x)^{2}}
$$

which is clearly false!

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao
method
Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes
$19 / 74$

Refining our heuristic...

Lola Thompson
 Prime gaps

An improved heuristic

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

To correct for non-independence, let p and p^{\prime} be independently chosen random integers. Look at:

$$
\frac{P(p, p+2 \text { not both divisible by } q)}{P\left(p, p^{\prime} \text { not both divisible by } q\right)}
$$

for each small prime q.

An improved heuristic

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

To correct for non-independence, let p and p^{\prime} be independently chosen random integers. Look at:

$$
\frac{P(p, p+2 \text { not both divisible by } q)}{P\left(p, p^{\prime} \text { not both divisible by } q\right)}
$$

for each small prime q.
Since

$$
P(q \mid p)=\frac{1}{q}
$$

then

$$
P(q \nmid p)=1-\frac{1}{q} .
$$

An improved heuristic

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

To correct for non-independence, let p and p^{\prime} be independently chosen random integers. Look at:

$$
\frac{P(p, p+2 \text { not both divisible by } q)}{P\left(p, p^{\prime} \text { not both divisible by } q\right)}
$$

for each small prime q.
Since

$$
P(q \mid p)=\frac{1}{q}
$$

then

$$
P(q \nmid p)=1-\frac{1}{q} .
$$

Thus, we have

$$
P\left(q \nmid p \text { and } q \nmid p^{\prime}\right)=\left(1-\frac{1}{q}\right)^{2} .
$$

An improved heuristic

Prime gaps

Lola

Thompson

Introduction

Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

$$
P(q \nmid p \text { and } q \nmid(p+2))=P(p \not \equiv 0 \text { or }-2 \quad(\bmod q))
$$

An improved heuristic

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

$$
P(q \nmid p \text { and } q \nmid(p+2))=P(p \not \equiv 0 \text { or }-2 \quad(\bmod q))
$$

Observe that

$$
P(p \not \equiv 0 \text { or }-2 \quad(\bmod q))= \begin{cases}1-2 / q & \text { if } q>2 \\ 1-1 / 2 & \text { if } q=2\end{cases}
$$

An improved heuristic

Prime gaps

Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

$$
P(q \nmid p \text { and } q \nmid(p+2))=P(p \not \equiv 0 \text { or }-2(\bmod q))
$$

Observe that

$$
P(p \not \equiv 0 \text { or }-2 \quad(\bmod q))= \begin{cases}1-2 / q & \text { if } q>2 \\ 1-1 / 2 & \text { if } q=2\end{cases}
$$

Hence, if $q>2$ then the correction factor for divisibility by q is

$$
\frac{\left(1-\frac{2}{q}\right)}{\left(1-\frac{1}{q}\right)^{2}}
$$

An improved heuristic

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

$$
P(q \nmid p \text { and } q \nmid(p+2))=P(p \not \equiv 0 \text { or }-2(\bmod q))
$$

Observe that

$$
P(p \not \equiv 0 \text { or }-2 \quad(\bmod q))= \begin{cases}1-2 / q & \text { if } q>2 \\ 1-1 / 2 & \text { if } q=2\end{cases}
$$

Hence, if $q>2$ then the correction factor for divisibility by q is

$$
\frac{\left(1-\frac{2}{q}\right)}{\left(1-\frac{1}{q}\right)^{2}} .
$$

If $q=2$ then the correction factor is

$$
\frac{1-\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=2 .
$$

The heuristic with correction factor

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Thus, we define

$$
C:=2 \prod_{\substack{q \text { prime } \\ q \geq 3}} \frac{(1-2 / q)}{(1-1 / q)^{2}} \approx 1.3203236 \ldots
$$

This suggests that

$$
\#\{p \leq x: p \text { and } p+2 \text { prime }\} \approx C \frac{x}{(\log x)^{2}}
$$

Where the heuristics fail

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

The heuristic argument relies heavily on the assumption that the primes p are uniformly distributed among the residue classes $(\bmod q)$.

Let $\pi(x ; q, a):=\#\{p \leq x: p \equiv a(\bmod q)\}$.
If the primes were uniformly distributed $(\bmod q)$, we'd expect:

$$
\pi(x ; q, a) \approx \frac{x}{\varphi(q) \log x}
$$

when $\operatorname{gcd}(a, q)=1$.

Equidistribution for "small" q

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Bombieri-Vinogradov)

For any constant $A>0$, there exists $B=B(A)$ such that

$$
\sum_{q \leq Q} \max _{\substack{a(\bmod) q \\(a, q)=1}}\left|\pi(x ; q, a)-\frac{x}{\varphi(q) \log x}\right|<_{A} \frac{x}{(\log x)^{A}}
$$

where $Q=\frac{x^{1 / 2}}{(\log x)^{B}}$.

Equidistribution for all q?

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Conjecture (Elliott-Halberstam)

The Bombieri-Vinogradov theorem still holds if we take $Q=x^{\theta}$, for any $\theta<1$.

We call θ the level of distribution of the set of primes.

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao
method
Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Recent results on bounded gaps between primes

Admissible k-tuples

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Definition

We say that a k-tuple $\left(h_{1}, \ldots, h_{k}\right)$ of nonnegative integers is admissible if it doesn't cover all of the possible remainders $(\bmod p)$ for any prime p.

Example: $(0,2,6,8,12)$ is an admissible 5 -tuple.
Residue classes not covered:
$1(\bmod 2)$
$1(\bmod 3)$
$4(\bmod 5)$
$3(\bmod 7)$
$3(\bmod 11)$

A conditional proof of the Bounded Gaps Theorem

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

G

Theorem (Goldston, Pintz and Yıldırım, 2009)

If $\left(h_{1}, \ldots, h_{k}\right)$ is admissible and the Elliot-Halberstam Conjecture holds with $Q=x^{1 / 2+\eta}$, then there are infinitely many n such that at least 2 of $n+h_{1}, \ldots, n+h_{k}$ are prime.

Zhang's "relaxation" of Bombieri-Vinogradov

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

34 / 74

Theorem (Zhang, 2013)

There exist $\eta, \delta>0$ such that for any given a,

$$
\sum_{\substack{q \leq Q \\(q, a)=1}}\left|\pi(x ; q, a)-\frac{x}{\varphi(q) \log x}\right|<_{A} \frac{x}{(\log x)^{A}}
$$

$$
q \text { squarefree \& } y \text {-smooth }
$$

$$
\text { where } Q=x^{1 / 2+\eta} \text { and } y=x^{\delta}
$$

Bounded gaps between primes (at last!)

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Corollary (Zhang, 2013)

There are infinitely many pairs of primes that differ by at most 70, 000, 000.

A stronger conjecture: prime k-tuples

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Conjecture (Hardy-Littlewood prime k-tuples)

Let $\mathcal{H}=\left(h_{1}, \ldots, h_{k}\right)$ be admissible. Then there are infinitely many integers n such that all of $n+h_{1}, \ldots, n+h_{k}$ are prime.

Maynard and Tao's independent work

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Maynard-Tao, November 2013)

Let $m \geq 2$. There for any admissible k-tuple $\mathcal{H}=\left(h_{1}, \ldots, h_{k}\right)$ with "large enough" k (relative to m), there are infinitely many n such that at least m of $n+h_{1}, \ldots, n+h_{k}$ are prime.

The state of the art

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (D. H. J. Polymath, 2014)

There are infinitely many pairs of primes that are at most 246 apart.

The state of the art

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (D. H. J. Polymath, 2014)

There are infinitely many pairs of primes that are at most 246 apart.

By assuming the Generalized Elliot-Halberstam Conjecture, this number can be reduced to 6 !!!

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

The Maynard-Tao method

A sketch of the Maynard-Tao method

Prime gaps

Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Goal: Find values of n for which the tuple $n+h_{1}, \ldots, n+h_{k}$ contains several primes.

Setup: For large N, look for n in the dyadic interval $[N, 2 N)$.
Let $W:=\prod_{p \leq \log _{3} N} p$. Since \mathcal{H} is admissible, we can choose an integer ν so that $\operatorname{gcd}\left(\nu+h_{i}, W\right)=1$ for all $1 \leq i \leq k$.

The W-trick: Pre-sieve the set to just those n satisfying $n \equiv \nu(\bmod W)$.

Thus, our sample space becomes

$$
\Omega:=\{N \leq n<2 N: n \equiv \nu \quad(\bmod W)\} .
$$

A sketch of the Maynard-Tao method

Prime gaps
Lola Thompson

Let $w(n)$ denote nonnegative weights and let $\chi_{\mathcal{P}}$ denote the characteristic function of the set \mathcal{P} of primes. Consider

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

$$
S_{1}:=\sum_{\substack{N \leq n<2 N \\ n \equiv \nu}} w(n)
$$

$$
S_{2}:=\sum_{\substack{N \leq n<2 N \\ n \equiv \nu \\ n \equiv \bmod W)}}\left(\sum_{i=1}^{k} \chi_{\mathcal{P}}\left(n+h_{i}\right)\right) w(n)
$$

The fraction S_{2} / S_{1} is a weighted average of the number of primes among $n+h_{1}, \ldots, n+h_{k}$ over Ω.

A sketch of the Maynard-Tao method

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Key idea: If $S_{2} / S_{1}>(m-1)$ for some $m \in \mathbb{Z}^{+}$then at least m of $n+h_{1}, \ldots, n+h_{k}$ are prime, for some $n \in \Omega$.

For this method to work, one needs to select the weights $w(n)$ so that:
(1) S_{2} and S_{1} can be estimated using tools of asymptotic analysis

A sketch of the Maynard-Tao method

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Key idea: If $S_{2} / S_{1}>(m-1)$ for some $m \in \mathbb{Z}^{+}$then at least m of $n+h_{1}, \ldots, n+h_{k}$ are prime, for some $n \in \Omega$.

For this method to work, one needs to select the weights $w(n)$ so that:
(1) S_{2} and S_{1} can be estimated using tools of asymptotic analysis
(2) S_{2} / S_{1} is large.

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of
the Maynard-Tao theorem

Applications to runs of consecutive primes

Maynard-Tao for number fields

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Castillo, Hall, Lemke Oliver, Pollack, T., 2014)

Let $m \geq 2$. Given a number field K, there exists an integer $k_{0}:=k_{0}(m, K)$ such that for any admissible k-tuple $\left(h_{1}, \ldots, h_{k}\right)$ in \mathcal{O}_{K} with $k \geq k_{0}$, there are infinitely many $\alpha \in \mathcal{O}_{K}$ such that at least m of $\alpha+h_{1}, \ldots, \alpha+h_{k}$ are prime.

Maynard-Tao for Chebotarev sets

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

A set of primes q_{1}, q_{2}, \ldots has the bounded gaps property if $\liminf _{n \rightarrow \infty} q_{n+m}-q_{n}<\infty$ for every m.

Theorem (Thorner, 2014)

Chebotarev sets have the bounded gaps property.

Maynard-Tao for Chebotarev sets

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao
method
Variants of
the Maynard-Tao theorem

Applications to runs of consecutive primes

Some examples of Chebotarev sets:

Maynard-Tao for Chebotarev sets

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Some examples of Chebotarev sets:

- The set of primes $p \equiv 1(\bmod 3)$ for which 2 is a cube $(\bmod p)$.

Maynard-Tao for Chebotarev sets

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Some examples of Chebotarev sets:

- The set of primes $p \equiv 1(\bmod 3)$ for which 2 is a cube $(\bmod p)$.
- Fix $n \in \mathbb{Z}^{+}$. The set of primes expressible in the form $x^{2}+n y^{2}$.

Maynard-Tao for Chebotarev sets

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Some examples of Chebotarev sets:

- The set of primes $p \equiv 1(\bmod 3)$ for which 2 is a cube $(\bmod p)$.
- Fix $n \in \mathbb{Z}^{+}$. The set of primes expressible in the form $x^{2}+n y^{2}$.
- Let τ be the Ramanujan tau function. The set of primes p for which $\tau(p) \equiv 0(\bmod d)$ for any positive integer d.

Maynard-Tao for Chebotarev sets

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Some examples of Chebotarev sets:

- The set of primes $p \equiv 1(\bmod 3)$ for which 2 is a cube $(\bmod p)$.
- Fix $n \in \mathbb{Z}^{+}$. The set of primes expressible in the form $x^{2}+n y^{2}$.
- Let τ be the Ramanujan tau function. The set of primes p for which $\tau(p) \equiv 0(\bmod d)$ for any positive integer d.
- The set of primes p for which $\# E\left(\mathbb{F}_{p}\right) \equiv p+1(\bmod d)$ for any positive integer d.

Twin prime polynomials: A tale of two dissertations

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Hall, Ph.D. 2006; Pollack, Ph.D. 2008)

If $q \geq 3$, then any $a \in \mathbb{F}_{q}$ (excluding $a=0$) occurs infinitely often as a gap between irreducible polynomials.
($q>3$ due to Hall; $q=3$ due to Pollack)

An improvement on Hall and Pollack's work

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Castillo, Hall, Lemke Oliver, Pollack, T., 2014)

Let $m \geq 2$. There is an integer $k_{0}:=k_{0}(m)$ such that for any admissible k-tuple (h_{1}, \ldots, h_{k}) of polynomials in $\mathbb{F}_{q}[x]$ with $k \geq k_{0}$, there are infinitely many $f \in \mathbb{F}_{q}[x]$ such that at least m of $f+h_{1}, \ldots, f+h_{k}$ are irreducible.

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Applications to runs of consecutive primes

Consecutive primes in arithmetic progressions

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Shiu, 2000)

Each set of remainders $a(\bmod q)$ with $\operatorname{gcd}(a, q)=1$ contains arbitrarily long runs of consecutive primes.

A paradigm shift

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

In a paper in 2013, Banks, Freiberg and Turnage-Butterbaugh used the Maynard-Tao method to give a strikingly simple re-proof of Shiu's result.

A paradigm shift

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

In a paper in 2013, Banks, Freiberg and Turnage-Butterbaugh used the Maynard-Tao method to give a strikingly simple re-proof of Shiu's result.

This begs the question: can the Maynard-Tao method be used to handle other "consecutive primes" problems?

A Conjecture of Erdős and Turan

Prime gaps

Lola Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

For each k, let $d_{k}=p_{k+1}-p_{k}$.

Conjecture (Erdős, Turan 1948)

The sequence $\left\{d_{k}\right\}$ contains arbitrarily long (strictly) increasing runs and arbitrarily long (strictly) decreasing runs.

Increasing/decreasing runs of prime gaps

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Banks, Freiberg, Turnage-Butterbaugh, 2013)

The sequence $\left\{d_{k}\right\}$ contains arbitrarily long (strictly) increasing runs and arbitrarily long (strictly) decreasing runs.

Consecutive primes with a given primitive root

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Pollack, 2014)

Under GRH, there exist arbitrarily long runs of consecutive primes possessing a given primitive root, g (where $g \neq-1$ and not a square).

Runs of primes with cyclic $E\left(\mathbb{F}_{p}\right)$

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Baker and Pollack, 2016)

Assume $G R H$. Fix an elliptic curve E / \mathbb{Q}. There are arbitrarily long runs of primes p for which $E\left(\mathbb{F}_{p}\right)$ is cyclic.

Arithmetic functions at consecutive shifted primes

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Pollack, T., 2015)

Let $f=\varphi, \sigma, \omega, \Omega, \tau$. There are arbitrarily long runs of consecutive primes p on which $f(p-1)$ is decreasing. The same holds for $f(p-1)$ increasing.

Proof sketch for decreasing runs of $\varphi(p-1)$'s

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Same basic setup as in Maynard-Tao:

For large N, let $W:=\prod_{p \leq \log _{3} N} p$ and define

$$
S_{1}:=\sum_{\substack{N \leq n<2 N \\ n \equiv \nu}} w(n)
$$

$$
S_{2}:=\sum_{\substack{N \leq n<2 N \\ n \equiv \nu \\(\bmod W)}}\left(\sum_{i=1}^{k} \chi_{\mathcal{P}}\left(n+h_{i}\right)\right) w(n)
$$

We want $\frac{S_{2}}{S_{1}}>m-1$ so that at least m of $n+h_{1}, \ldots, n+h_{k}$ are prime for $n \in \Omega$.

Proof sketch for decreasing runs of $\varphi(p-1)$'s

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Key innovation: Modify the W-trick

Fix $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ where $h_{i}=(i-1)(2 k)!$. With this \mathcal{H}, we want to choose $\nu(\bmod W)$ such that:
(1) (Consecutive Primes) For $n \in \Omega$, any prime $\left[n+h_{1}, n+h_{k}\right]$ is in $n+\mathcal{H}$.
(2) (Decreasing φ values) With probability $1+o(1)$,

$$
\frac{n+h_{i}-1}{\varphi\left(n+h_{i}-1\right)} \in\left(2^{4 i}, 2^{4 i+3}\right]
$$

for $1 \leq i \leq k$.

Variations

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Pollack, T., 2015)

Let $f=\varphi, \sigma, \omega, \Omega, \tau$. There are arbitrarily long runs of consecutive primes p on which $f(p-1)$ is decreasing. The same holds for $f(p-1)$ increasing.

Variation	Modification
Increasing φ^{\prime} 's	Replace \mathcal{H} with $-\mathcal{H}$
Increasing σ^{\prime} s	Replace $\frac{n+h_{i}-1}{\varphi\left(n+h_{i}-1\right)}$ with $\frac{\sigma\left(n+h_{i}-1\right)}{n+h_{i}-1}$.
Decreasing σ 's	Like increasing σ 's but replace \mathcal{H} with $-\mathcal{H}$.

**Need additional modifications to handle ω, Ω, τ.

Digit sums of consecutive primes

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The
Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

Definition

Let $s_{g}(n)$ denote the sum of the base- g digits of n.

Example: $s_{10}(523)=5+2+3=10$

$$
s_{10}(541)=5+4+1=10
$$

Question (Sierpinski, 1961): Are there arbitrarily long runs of consecutive primes p on which $s_{g}(p)$ is constant? increasing? decreasing?

Digit sums of consecutive primes

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes
$68 / 74$

A brief history:

Digit sums of consecutive primes

Prime gaps

> Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

A brief history:

- Sierpinski (1961): $s_{10}\left(p_{n}\right)<s_{10}\left(p_{n+1}\right)$ infinitely often.

Digit sums of consecutive primes

Prime gaps
Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

A brief history:

- Sierpinski (1961): $s_{10}\left(p_{n}\right)<s_{10}\left(p_{n+1}\right)$ infinitely often.
- Erdős (1962): $s_{10}\left(p_{n}\right)>s_{10}\left(p_{n+1}\right)$ infinitely often.

Digit sums of consecutive primes

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

A brief history:

- Sierpinski (1961): $s_{10}\left(p_{n}\right)<s_{10}\left(p_{n+1}\right)$ infinitely often.
- Erdős (1962): $s_{10}\left(p_{n}\right)>s_{10}\left(p_{n+1}\right)$ infinitely often.
- Sierpinski (1968): Assuming Dickson's prime k-tuples conjecture, $s_{10}\left(p_{n}\right)>s_{10}\left(p_{n+1}\right)>s_{10}\left(p_{n+2}\right)$ infinitely often.

Digit sums of consecutive primes

Prime gaps
Lola
Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the
Maynard-Tao theorem

Applications to runs of consecutive primes

A brief history:

- Sierpinski (1961): $s_{10}\left(p_{n}\right)<s_{10}\left(p_{n+1}\right)$ infinitely often.
- Erdős (1962): $s_{10}\left(p_{n}\right)>s_{10}\left(p_{n+1}\right)$ infinitely often.
- Sierpinski (1968): Assuming Dickson's prime k-tuples conjecture, $s_{10}\left(p_{n}\right)>s_{10}\left(p_{n+1}\right)>s_{10}\left(p_{n+2}\right)$ infinitely often.
- Schinzel (unpublished claim): Assuming Hypothesis H, there are arbitrarily long runs of consecutive p on which $s_{10}(p)$ is increasing (decreasing).

Digit sums of consecutive primes

Prime gaps
Lola Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao method

Variants of the Maynard-Tao theorem

Applications to runs of consecutive primes

Theorem (Pollack, T., 2015)

For any base g, there are arbitrarily long runs of consecutive primes p on which $s_{g}(p)$ is constant/increasing/decreasing.

Prime gaps

Lola

Thompson

Introduction
Recent results on bounded gaps between primes

The

Maynard-Tao
method
Variants of
the
Maynard-Tao
theorem
Applications
to runs of consecutive primes

74 / 74

Thank you!

Lola Thompson
 Prime gaps

