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Abstract. The Hardy–Littlewood prime k-tuples conjecture has long been thought to be
completely unapproachable with current methods. While this sadly remains true, startling
breakthroughs of Zhang, Maynard, and Tao have nevertheless made significant progress
toward this problem. In this work, we extend the Maynard-Tao method to both number
fields and the function field Fq(t).

1. Introduction and statement of results

The classical twin prime conjecture asserts that there are infinitely many primes p such
that p + 2 is also prime. While this conjecture remains completely out of reach of current
methods, there has nevertheless been remarkable recent progress made towards it, beginning
with work of Goldston, Pintz, and Yıldırım [4], who showed, if pn denotes the nth prime,
that

lim inf
n→∞

pn+1 − pn
log pn

= 0,

so that gaps between consecutive primes can be arbitrarily small when compared with the
average gap. Expanding upon these techniques, Zhang [18] proved the amazing result that

lim inf
n→∞

pn+1 − pn ≤ 70 · 106,

i.e., that there are bounded gaps between primes! The techniques of Zhang and Goldston,
Pintz, and Yıldırım have subsequently been significantly expanded upon by Maynard [11],
Tao, and the Polymath project [14], so that the best known bound on gaps between primes,
at least at the time of writing, is 252. Remarkably, the techniques of Maynard and Tao also
enable one to achieve bounded gaps between m consecutive primes, i.e., that lim inf(pn+m−1−
pn) is finite.

The main idea in all of these results is to attack approximate versions of the Hardy–
Littlewood prime k-tuples conjecture: Given a k-tuple H = (h1, . . . , hk) of distinct integers,
we say that H is admissible if the set {h1, . . . , hk} mod p is not all of Z/pZ for each prime
p. The Hardy–Littlewood prime k-tuples conjecture can then be stated as follows.

Conjecture. Given an admissible k-tuple H = (h1, . . . , hk), there are infinitely many inte-
gers n such that each of n+ h1, . . . , n+ hk is prime.

This conjecture remains intractable at present— note that the k = 2 case immediately
implies the twin prime conjecture. However, Maynard, Tao, and Zhang have recently suc-
ceeded in obtaining partial results that would have seemed incredible just a few years ago.
In particular, we have the following theorem of Maynard [11] and Tao.
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Theorem (Maynard–Tao). Let m ≥ 2. There exists a constant k0 := k0(m) such that, for
any admissible k-tuple H = (h1, . . . , hk) with k ≥ k0, there are infinitely many n such that
at least m of n+ h1, . . . , n+ hk are prime.

A result on bounded gaps comes from taking m = 2 and providing an explicit admissible
k0(2)-tuple of small diameter. Indeed, Zhang’s [18] main theorem is the m = 2 case of the
above, and he obtained k0(2) = 3.6 · 106. Maynard [11] was able to take k0(2) = 105, and
the Polymath project [14] has reduced the permissible value to k0(2) = 51. In our work at
hand, we prove an analogue of the Maynard–Tao theorem for number fields and the function
field Fq(t), and we derive corollaries which we believe to be of additional arithmetic interest.

We begin by extending the Maynard–Tao theorem to number fields, for which we must first
fix some notation. Given a number field K with ring of integers OK , we say that α ∈ OK
is prime if it generates a principal prime ideal, and we say that a k-tuple (h1, . . . , hk) of
distinct elements of OK is admissible if the set {h1, . . . , hk} mod p is not all of OK/p for
each prime ideal p. Our first theorem is a direct translation of the Maynard–Tao theorem.

Theorem 1.1. Let m ≥ 2. There is an integer k0 := k0(m,K) such that for any admissible
k-tuple (h1, . . . , hk) in OK with k ≥ k0, there are infinitely many α ∈ OK such that at least
m of α + h1, . . . , α + hk are prime.

Two remarks: 1. As the proof of Theorem 1.1 will show, the numerology which produces k0
from m is similar to that in Maynard’s paper, and is exactly the same if K is totally real.
In general, k0 will depend only upon m and the number of complex embeddings of K.

2. Another way of extending the Maynard–Tao theorem to number fields was considered
by Thorner [17], who proved the analogous result for rational primes satisfying Chebotarev-
type conditions (i.e., primes p such that Frobp lies in a specified conjugacy-invariant subset
of Gal(K/Q) for some K/Q).

As an immediate corollary to Theorem 1.1, we can deduce bounded gaps between prime
elements of OK , where the bound depends only on the number of complex embeddings of
K. As an example, we have the following corollary for totally real fields.

Corollary 1.2. If K/Q is totally real, then there are infinitely many primes α1, α2 ∈ OK
such that |σ(α1 − α2)| ≤ 600 for every embedding σ of K.

We now turn our attention to the function field Fq(t). Here, the role of primes is played
by monic irreducible polynomials in Fq[t]. We define a k-tuple (h1, . . . , hk) of polynomials
in Fq[t] to be admissible if, for each irreducible P , the set {h1, . . . , hk} does not cover all
residue classes of Fq[t]/P .

Theorem 1.3. Let m ≥ 2. There is an integer k0 := k0(m), independent of q, such that for
any admissible k-tuple (h1, . . . , hk) of polynomials in Fq[t] with k ≥ k0, there are infinitely
many f ∈ Fq[t] such that at least m of f + h1, . . . , f + hk are irreducible.

Remark. Strikingly, the independence of k0 from q passes even so far that Maynard’s values
of k0(m) are permissible in this setting as well. In particular, we may take k0(2) = 105.

As a corollary, we can deduce bounded degree gaps between irreducible polynomials. In
fact, one could already prove something stronger: if q ≥ 3, then any a ∈ F×q occurs infinitely
often as a gap (see [6] for q > 3 and [13] for q = 3). These proofs are constructive, but the
degrees of the irreducible polynomials produced lie in very sparse sets. Our next result shows
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that any a ∈ Fq, and, indeed, any monomial, in fact occurs in many degrees. Moreover, given
any large degree, a positive proportion of elements of Fq[t] of bounded degree occur as a gap.

Theorem 1.4. Let k0 := k0(2) from Theorem 1.3 and let q ≥ k0 + 1.

(i) For d ≥ 0, if n is sufficiently large and satisfies (n− d, q− 1) = 1, each monomial in
Fq[t] of degree d occurs as a gap between monic irreducibles of degree n.

(ii) For d ≥ 0 and n sufficiently large, the proportion of elements of degree d that appear
as gaps between irreducibles in degree n is at least

1

k0 − 1
− 1

q − 1
.

The same conclusion holds if we restrict to monomials of degree d.

Remark. The observation that our methods permit us to deduce the first part of Theorem
1.4 is due to Alexei Entin.

This paper is organized as follows. In Section 2, we describe the Maynard–Tao method
in a general context, and we prove Theorems 1.1 and 1.3 simultaneously. In Section 3, we
consider the application of these theorems, and we prove Corollary 1.2 and Theorem 1.4.

2. The general Maynard–Tao method

The Maynard–Tao method for producing primes in tuples is very general, and relies upon
a multidimensional variant of the Selberg sieve; indeed, the multidimensional nature of the
sieve is the key improvement over the work of Goldston, Pintz, and Yıldırım, and that of
Zhang. Many of the steps in the method are essentially combinatorial, relying principally
upon multiplicative functionology and elementary statements, rather than hard information
about the structure of the integers or the primes. It is only in a few key places that deep
information is used, and, indeed, these results can be assumed to be “black boxes”. As such,
when proving our theorems, we proceed in a very general fashion.

We first define general notation and establish a dictionary which permits us to talk si-
multaneously about the integers (the Maynard–Tao theorem), number fields (Theorem 1.1),
and the function field Fq(t) (Theorem 1.3). This of course introduces some notational obfus-
cation, but we nevertheless consider this approach useful: first, it enables us to prove each
theorem simultaneously, and, second, it elucidates what is needed to prove a Maynard–Tao
type result in a general setting. In Section 2.2, we use this dictionary, together with the
combinatorial arguments of Maynard, to lay down the proof of the Maynard–Tao theorem,
assuming the existence of the relevant black boxes. It is only in Section 2.3 that we re-
move ourselves from the general setting and specialize to the number field and function field
settings where we have the necessary arithmetic information. Accordingly, it is here that
precise versions of Theorems 1.1 and 1.3 are proved.

2.1. The dictionary. We begin by letting A denote the set of “integers” that we are con-
sidering. Thus, in the case of the Maynard–Tao theorem, we will take A = Z. In the number
field setting, we will take A to be the ring of integers OK of some number field K/Q, and in
the function field setting, we will take A to be the polynomial ring Fq[t].

For any positive integer N , we let A(N) denote the “box of size N” inside A. Over the
integers, this is the interval (N, 2N ]. In the polynomial setting, we let A(N) be the collection
of monic elements of norm N ; that is, if N = qn, then A(N) is the set of monic, degree n
elements of Fq[t]. The definition of A(N) is slightly more complicated in the number field
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situation. We first define A0(N) as the set of α ∈ OK which satisfy 0 < σ(α) ≤ N for all
real embeddings σ : K ↪→ C and satisfy |σ(α)| ≤ N for all complex embeddings. We then
take A(N) := A0(2N) \ A0(N).

Given a nonzero ideal q ⊆ A, we define analogues of three classical multiplicative functions,
namely the norm |q| := |A/q|, the “phi-function” ϕ(q) := |(A/q)×|, and the Möbius function
µ(q) := (−1)r if q = p1 . . . pr for distinct prime ideals p1, . . . , pr and µ(q) = 0 otherwise. We
define the zeta function of A by

ζA(s) :=
∑
q⊆A

|q|−s.

When A = OK , the function ζA(s) is the usual Dedekind zeta function of K. When A = Fq[t],
one has the closed form expression ζA(s) = 1

1−q1−s . This differs from the usual zeta function

of Fq(t) in that the Euler factor corresponding to the prime over 1/t has been removed.
We record here that the number of elements α ∈ A(N) satisfying a congruence condition

α ≡ α0 (mod q) is given by
|A(N)|
|q|

+O(|∂A(N, q)|),

where

|∂A(N, q)| �

{
1 if A = Z or A = Fq[t],
1 + ( |A(N)|

|q| )1−
1
d if A = OK and [K : Q] = d.

In fact, if A = Fq[t] and |A(N)| ≥ |q|, then we can take |∂A(N, q)| = 0. When A = Z or A =
Fq[t], these estimates for |∂A(N, q)| are trivial. When A = OK , matters are more complicated
but still relatively familiar. One starts by embedding K into Minkowski space Rr1 × Cr2 .
Under this embedding, q goes to a lattice, while the constraints on A(N) correspond to a
certain region of Rr1 × Cr2 . The estimate for |∂A(N, q)| comes from estimating the number
of translates of the fundamental parallelogram that intersect the boundary of that region.
(Compare with the proof of [10, Lemma 1].) For our purposes, what is important to take
away is that we always have a power savings in the error term: |∂A(N, q)| � (|A(N)|/|q|)1−ν
for some positive ν = ν(A), as long as |A(N)| ≥ |q|.

Let P denote the “prime” elements of A and take P (N) = P ∩ A(N). If A = Z, P is
simply the set of primes, and, if A = OK , P is the set of generators of principal prime ideals.
If A = Fq[t], P is the set of monic irreducible polynomials. In all of these cases, we have a
prime number theorem of the form

|P (N)| ∼ c · |A(N)|
logN

for some constant c, and we moreover have a prime number theorem for the set P (N ; q, α0)
of primes in the coprime residue class α0 (mod q) of the form

|P (N ; q, α0)| =
1

ϕ(q)
|P (N)|+ E(N ; q, α0).

For any individual q, we have the upper bound E(N ; q, α0) = oq(P (N)), and we say that P
has level of distribution θ > 0 if, for any B > 0, the bound∑

|q|≤Q

max
α0(mod q)
(α0,q)=1

|E(N ; q, α0)| �B
|A(N)|
logB N
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holds for all Q ≤ |A(N)|θ and all sufficiently large N . If A = Z, the Bombieri-Vinogradov
theorem asserts that the primes have level of distribution θ for any θ < 1/2 and the Elliott-
Halberstam conjecture is that any θ < 1 is permissible (see [2] for more information). A
generalized form of the Bombieri-Vinogradov theorem due to Hinz [9] shows that the primes
in OK have some level of distribution θ, the specific value depending only on the number
of complex conjugate embeddings of K; in particular, any totally real field has level of
distribution θ for any θ < 1/2. Finally, in the function field setting, Weil’s proof of the
Riemann hypothesis for curves implies that we may take any θ < 1/2.

2.2. Sieve manipulations: Multiplicative functionology. We are now ready to describe
the Maynard–Tao method in general terms; our exposition follows that of Maynard [11], to
which we make frequent reference. We say that a tuple h1, . . . , hk ∈ A is admissible if it
does not cover all residue classes modulo p for any prime ideal p of A. The main objects of
consideration are the sums

S1 :=
∑

α∈A(N)
α≡v0(modw)

 ∑
d1,...,dk:

di|(α+hi) ∀i

λd1,...,dk


2

and

S2 :=
∑

α∈A(N)
α≡v0(modw)

(
k∑
i=1

χP (α + hi)

) ∑
d1,...,dk:

di|(α+hi) ∀i

λd1,...,dk


2

,

where χP (·) denotes the characteristic function of P , λd1,...,dk are suitably chosen weights,
w :=

∏
|p|<D0

p for some D0 tending slowly to infinity with N , say D0 = log log logN , and

v0 is a residue class modulo w chosen so that each α + hi lies in A/w×.
Because each summand is non-negative, if we can show that S2 > ρS1 for some positive ρ,

then there must be at least one α ∈ A(N) for which more than ρ of the values α+h1, . . . , α+hk
are prime. This is our goal, and it is where the art of choosing the weights λd1,...,dk comes
into play. We begin by making some assumptions regarding their support. In particular,
given d1, . . . , dk, define d :=

∏k
i=1 di, and set λd1,...,dk = 0 unless (d,w) = 1, d is squarefree,

and |d| ≤ R, where R will be chosen later to be a small power of |A(N)|. The main result
of this section is the following.

Proposition 2.1. Suppose that the primes P have level of distribution θ > 0, and set R =
|A(N)|θ/2−δ for some small δ > 0. Given a piecewise differentiable function F : [0, 1]k → R
supported on the simplex Rk := {(x1, . . . , xk) ∈ [0, 1]k : x1 + · · · + xk ≤ 1}, let Fmax :=

sup(t1,...,tk)∈[0,1]k |F (t1, . . . , tk)|+
∑k

i=1

∣∣∣ ∂F∂xi (t1, . . . , tk)∣∣∣. If we set

λd1,...,dk :=

(
k∏
i=1

µ(di)|di|

) ∑
r1,...,rk
di|ri ∀i

(ri,w)=1∀i

µ(r1 . . . rk)
2∏k

i=1 ϕ(ri)
F

(
log |r1|
logR

, . . . ,
log |rk|
logR

)
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whenever |d1 . . . dk| < R and (d1 . . . dk,w) = 1, and λd1,...,dk = 0 otherwise, then

S1 =
(1 + o(1))ϕ(w)k|A(N)|(cA logR)k

|w|k+1
Ik(F )

and

S2 =
(1 + o(1))ϕ(w)k|P (N)|(cA logR)k+1

|w|k+1

k∑
m=1

J
(m)
k (F )

where cA is the residue at s = 1 of ζA(s),

Ik(F ) :=

∫
· · ·
∫
Rk

F (x1, . . . , xk)
2 dx1 . . . dxk

and

J
(m)
k (F ) :=

∫
· · ·
∫
[0,1]k−1

(∫ 1

0

F (x1, . . . , xk) dxm

)2

dx1 . . . dxm−1dxm+1 . . . dxk.

Before we can prove Proposition 2.1, we first show that, by diagonalizing the quadratic
form, we can rewrite S1 and S2. We begin with S1.

Lemma 2.2. For ideals r1, . . . , rk, let

yr1,...,rk =

(
k∏
i=1

µ(ri)ϕ(ri)

) ∑
d1,...,dk
ri|di ∀i

λd1,...,dk∏k
i=1 |di|

,

and set ymax = supr1,...,rk
|yr1,...,rk |. If R = |A(N)|1/2−δ for some δ > 0, then

S1 =
|A(N)|
|w|

∑
r1,...,rk

y2r1,...,rk∏k
i=1 ϕ(ri)

+O

(
y2max|A(N)|ϕ(w)k(logR)k

|w|k+1D0

)
.

Remark. The change of variables to yr1,...,rk is invertible, the proof of which relies only on
elementary manipulations (see [11, p. 9]).

Proof of Lemma 2.2. We begin by expanding the square and interchanging the order of sum-
mation to obtain

S1 =
∑

d1,...,dk

∑
e1,...,ek

λd1,...,dkλe1,...,ek
∑

α∈A(N)
α≡v0(modw)

α≡−hi(mod [di,ei]) ∀i

1

=
|A(N)|
|w|

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏k
i=1 |[di, ei]|

+O

λ2max

∑′

d1,...,dk
e1,...,ek

|∂A(N,w
k∏
i=1

[di, ei])|

 .

Here the ′ on the summation indicates it is to be taken over those d1, . . . , dk, e1, . . . , ek for
which the congruence conditions modulo w, [d1, e1], . . . , [dk, ek] admit a simultaneous solution;
note that in that case, w, [d1, e1], . . . , [dk, ek] are pairwise coprime. Now recall from §2.1 that
|∂A(N, q)| � (|A(N)|/|q|)1−ν for some ν > 0, provided that |A(N)| ≥ |q|. This implies that
the above error is

� λ2max · |A(N)|1−ν
∑′

d1,...,dk
e1,...,ek

1∏k
i=1 |[di, ei]|1−ν

.
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For each q, the number of ways of choosing d1, . . . , dk and e1, . . . , ek so that
∏k

i=1[di, ei] = q
is at most τ3k(q). Hence our error is

� λ2max|A(N)|1−ν ·
∑
|q|≤R2

µ2(q)τ3k(q)

|q|1−ν
≤ λ2max|A(N)|1−ν ·R2ν

∏
|p|≤R2

(
1 +

3k

|p|

)
� λ2max|A(N)|1−ν ·R2ν(logR)3k = λ2max|A(N)|(logR)3k · (|A(N)|/R2)−ν .

(To go from the first line to the second, we used a version of Mertens’ theorem for global
fields. See, for example, [15]. This sort of estimation of sums by Euler products will be used
frequently in what follows without further comment.) Because R = |A(N)|1/2−δ, this error
is negligible compared to the error claimed in the statement of the lemma.

We now focus our attention on the main term. Following Maynard’s manipulations to
uncouple the interdependence of di and ej and making the change of variables indicated in
the statement of the lemma, the main term becomes

|A(N)|
|w|

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

ϕ(ui)

) ∑∗

s1,2,...,sk,k−1

 ∏
1≤i,j≤k
i 6=j

µ(si,j)

ϕ(si,j)2

 ya1,...,akyb1,...,bk ,

and we note, for consideration of the error term, that λmax � ymax logk R. In the above,
ai := ui

∏
j 6=i si,j, bj := uj

∏
i 6=j si,j, and the ∗ on the summation indicates it is to be taken

over si,j such that (si,j, ui) = (si,j, uj) = 1 = (si,j, sa,j) = (si,j, si,b) for all a 6= i, b 6= j.
Moreover, considering the support of the y’s, if some si,j 6= 1, then |si,j| > D0 owing to the
fact that (si,j,w) = 1. The contribution in that case is at most

y2max|A(N)|
|w|

 ∑
|u|≤R

(u,w)=1

µ(u)2

ϕ(u)


k ∑
|si,j |>D0

µ(si,j)
2

ϕ(si,j)2

(∑
s⊆A

µ(s)2

ϕ(s)2

)k2−k−1

�y
2
max|A(N)|ϕ(w)k logk R

|w|k+1D0

.

(2.1)

We may thus restrict our attention only to those terms arising from si,j = 1 for all i 6= j.
The lemma follows. �

We now turn to S2, the handling of which will require more delicate information than was
needed for S1. We first define, for 1 ≤ m ≤ k, the component sums

S
(m)
2 :=

∑
α∈A(N)

α≡v0(modw)

χP (α + hm)

 ∑
d1,...,dk:

di|(α+hi) ∀i

λd1,...,dk


2

,

so that S2 =
∑k

m=1 S
(m)
2 . To rewrite S

(m)
2 in a manner similar to what was done with

S1, we need information about how the primes are distributed in arithmetic progressions.
Specifically, we will need the assumption that P has level of distribution θ > 0.
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Lemma 2.3. Assume that P has level of distribution θ > 0 and that R = |A(N)|θ/2−ε. Let

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
d1,...,dk
r1|di ∀i
dm=1

λd1,...,dk∏k
i=1 ϕ(di)

,

where g is the multiplicative function defined by g(p) = |p| − 2 for all prime ideals p of A.

Let y
(m)
max = supr1,...,rk

|y(m)
r1,...,rk |. Then, for any fixed B > 0 we have

S
(m)
2 =

|P (N)|
ϕ(w)

∑
r1,...,rk

(y
(m)
r1,...,rk)2∏k
i=1 g(ri)

+O

(
(y

(m)
max)2ϕ(w)k−2|A(N)|(logN)k−2

|w|k−1D0

)
+O

(
y2max|A(N)|

(logN)B

)
.

Proof. We begin by expanding out the square and swapping the order of summation, ob-
taining

S
(m)
2 =

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

α∈A(N)
α≡v0(modw)
[di,ei]|(α+hi)∀i

χP (α + hm).

As in Lemma 2.2, we rewrite the inner sum over a single residue class modulo q =
w
∏k

i=1[di, ei], which we may do if the ideals w, [d1, e1], . . . , [dk, ek] are pairwise coprime. The
element α+hm will lie in a residue class coprime to the modulus if and only if dm = em = 1,
the trivial ideal. Based on our choice of v0 (modw), this is the only case that yields a
contribution. We find that∑

α∈A(N)
α≡v0(modw)
[di,ei]|(α+hi) ∀i

χP (α + hm) =
|P (N)|
ϕ(q)

+O

( |A(N)|
|w|
∏k

i=1 |[di, ei]|

)1−ν
+O (E(N ; q, α0)) ,

where we recall that P (N) = P ∩ A(N). (The first O-term is needed in the number
field case, since it is α that is restricted to A(N) instead of α + hm.) Letting E(N ; q) :=
max(α0,q)=1 |E(N ; q, α0)|, we thus find that

(2.2) S
(m)
2 =

|P (N)|
ϕ(w)

∑
d1,...,dk
e1,...,ek

em=dm=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ([di, ei])

+O

 ∑
d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |E(N ; q)



+O

λ2max · |A(N)|1−ν
∑

d1,...,dk
e1,...,ek

1∏k
i=1 |[di, ei]|1−ν

 .

The second error term is O(λ2max|A(N)|(logR)3k · (|A(N)|/R2)−ν), by an argument already
appearing in the proof of Lemma 2.2. This is negligible for us. Now consider the first O-
term. For any q, there are at most τ3k(q) ways to choose k-tuples d1, . . . , dk, e1, . . . , ek such

that w
∏k

i=1[di, ei] = q. Recall that λmax � ymax logk R. Moreover, by our assumptions on
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the support of λd1,...,dk , the modulus q satisfies |q| ≤ |w|R2. Thus, the error term in (2.2)
contributes no more than

y2max(logR)2k
∑

|q|<R2|w|

µ(q)2τ3k(q)E(N ; q).(2.3)

We now recall that we have assumed that the primes P have level of distribution θ, and we
have taken R = |A(N)|θ/2−ε. Using the trivial bound E(N ; q)� |A(N)|/ϕ(q) along with the
Cauchy-Schwarz inequality, we therefore find that

∑
|q|<R2|w|

µ(q)2τ3k(q)E(N ; q) �

 ∑
|q|<R2|w|

µ(q)2τ 23k(q)
|A(N)|
ϕ(q)

1/2 ∑
|q|<R2|w|

µ(q)2E(N ; q)

1/2

� |A(N)|
(logN)B

for any large B.
Now that we have handled the error term, we are free to concentrate on the main term.

As in the proof of Lemma 2.2, we decouple di and ej by introducing an auxilliary summation
over ideals si,j, and we define the function multiplicative function g(a) by g(p) = |p| − 2, so
that

1

ϕ([di, ei])
=

1

ϕ(di)ϕ(ei)

∑
ui|diei

g(ui).

Our main term can thus be written as

|P (N)|
ϕ(w)

∑
u1,...,uk
um=1

(
k∏
i=1

g(ui)

) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i,j≤k

µ(si,j)

) ∑
d1,...,dk
e1,...,ek
ui|diei ∀i

si,j |diej ∀i 6=j
dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ(di)ϕ(ei)

.(2.4)

We now make the change of variables indicated in the statement of the lemma. This yields

|P (N)|
ϕ(w)

∑
u1,...,uk
um=1

(
k∏
i=1

µ(ui)
2

g(ui)

) ∑
s1,2,...,sk,k−1

 ∏
1≤i,j≤k
i 6=j

µ(si,j)

g(si,j)2

 y(m)
a1,...,ak

y
(m)
b1,...,bk

,

where the ai’s and bj’s are defined as in the proof of Lemma 2.2. When some si,j 6= 1, the
contribution is

� (y
(m)
max)2|A(N)|
ϕ(w) logN

 ∑
|u|<R

(u,w)=1

µ(u)2

g(u)


k−1(∑

s

µ(s)2

g(s)2

)k(k−1)−1 ∑
|si,j |>D0

µ(si,j)
2

g(si,j)2

� (y
(m)
max)2ϕ(w)k−2|A(N)|(logR)k−1

|w|k−1D0 logN
.
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Putting all of this together, we find that

S
(m)
2 =

|P (N)|
ϕ(w)

∑
u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

+O

(
(y

(m)
max)2ϕ(w)k−2|A(N)|(logR)k−2

D0|w|k−1
+
y2max|A(N)|
(logN)B

)
,

as claimed. �

We note that the quantities y
(m)
r1,...,rk can be related to the variables yr1,...,rk .

Lemma 2.4. If rm = 1, then

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)
+O

(
ymaxϕ(w) logR

|w|D0

)
.

Proof. The proof of this result relies upon combinatorial manipulations and standard esti-
mates, and, using the ideas in Lemmas 2.2 and 2.3 can be deduced almost mutatis mutandis
from Maynard’s proof of Lemma 5.3 [11]. �

We are now ready to make a specific choice of our sieve weights. In particular, by choosing
yr1,...,rk to be determined by the values of a smooth function, we will be able to express S1

and S
(m)
2 in particularly nice terms. Thus, let F : [0, 1]k → R be a piecewise differentiable

function supported on
{

(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1
}

. If r =
∏k

i=1 ri satisfies µ(r)2 = 1

and (r,w) = 1, set

yr1,...,rk := F

(
log |r1|
logR

, . . . ,
log |rk|
logR

)
and set yr1,...,rk = 0 otherwise. In order to evaluate the summations of yr1,...,rk , we will need
the following lemma, which is an analogue of a result of Goldston, Graham, Pintz, and
Yıldırım [3, Lemma 4]. (This result also appears as Lemma 6.1 in [11].)

Lemma 2.5. Suppose γ is a multiplicative function on the nonzero ideals of A such that
there are constants κ > 0, A1 > 0, A2 ≥ 1, and L ≥ 1 satisfying

0 ≤ γ(p)

p
≤ 1− A1,

and

−L ≤
∑

w≤|p|<z

γ(p) log |p|
|p|

− κ log z/w ≤ A2,

for any 2 ≤ w ≤ z. Let g be the totally multiplicative function defined on prime ideals by
g(p) = γ(p)/(|p| − γ(p)). Let G : [0, 1] → R be a piecewise differentiable function, and let
Gmax = supt∈[0,1](|G(t)|+ |G′(t)|). Then∑
|d|<z

µ(d)2g(d)G

(
log |d|
log z

)
= S

cκA · (log z)κ

Γ(κ)

∫ 1

0

G(x)xκ−1dx+OA,A1,A2,κ

(
LGmax(log z)κ−1

)
,

where cA := Ress=1 ζA(s) and

S =
∏
p

(
1− γ(p)

|p|

)−1(
1− 1

|p|

)κ
.
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Remark. In both [3] and [11], the analogous error term is asserted to beO(SLGmax(log z)κ−1).
In other words, there is a factor of S not present in our statement. However, the proofs
appear to support this stronger estimate only if one makes a further assumption on the size
of z compared to L. Fortunately, this discrepancy is of no importance in the applications,
as this error term is always subsumed by larger errors.

Proof. Let G(z) :=
∑
|d|<z µ(d)2g(d). A straightforward argument using partial summation

(along the lines of that given explicitly by Goldston et al. in their proof of [3, Lemma 4])
reduces the claim to showing that

G(z) = S · c
κ
A(log z)κ

Γ(κ+ 1)
+OA,A1,A2,κ(L(log (2z))κ−1)

for all z ≥ 1. This last assertion is an exact analogue of what is shown by Halberstam and
Richert in their proof of Lemma 5.4 in [5]. In fact, following their argument [5, pp. 147–151]
essentially verbatim, we find that

G(z) = c(log z)κ +O(L(log (2z))κ−1)

for some constant c and all z ≥ 1. (Compare with equations (3.10) and (3.11) on pages 150
and 151 of [5].) It remains only to show that c = cκA · S/Γ(k + 1). The argument at the
bottom of p. 151 of [5] shows that

c =
1

Γ(κ+ 1)
lim
s→0+

sκ
∏
p

(
1 +

g(p)

|p|s

)
.

To compute the limit, note that ζA(s + 1) =
∏

p(1 − |p|−s−1) and that s ∼ cA/ζA(s + 1) as

s→ 0+. This implies that

lim
s→0+

sκ
∏
p

(
1 +

g(p)

|p|s

)
= cκA · lim

s→0+

∏
p

(
1 +

g(p)

|p|s

)(
1− 1

|p|s+1

)κ
.

Our opening assumptions on γ(p) imply uniform convergence of the final product for real
s ≥ 0. (The proof of this follows the proof of the first part of Lemma 5.3 in [5].) Thus,

lim
s→0+

∏
p

(
1 +

g(p)

|p|s

)(
1− 1

|p|s+1

)κ
=
∏
p

(1 + g(p))

(
1− 1

|p|

)κ
= S.

Hence, c = cκA ·S/Γ(k + 1), which completes the proof of the lemma. �

Proof of Proposition 2.1. With all of our earlier results in place, the proof of this result
follows from exactly the same reasoning as Maynard’s proofs of Lemmas 6.1 and 6.2 [11].
Here our Lemma 2.2 replaces his Lemma 5.1, our Lemma 2.3 replaces his Lemma 5.2, our
Lemma 2.4 replaces his Lemma 5.3, and our Lemma 2.5 replaces his Lemma 6.1. In fact,
we find that the asymptotic estimates for S1 and S2 asserted in Proposition 2.1 hold with

errors that are O(F 2
max|A(N)|ϕ(w)k(logR)k

|w|k+1D0
). �

2.3. Final assembly of theorems. Proposition 2.1 allows us to obtain the following ana-
logue of [11, Proposition 4.2].

Corollary 2.6. Suppose that the set of primes P in A has level of distribution θ > 0.

Let H = (h1, . . . , hk) be an admissible k-tuple. Let Ik(F ) and J
(m)
k (F ) be defined as in

the statement of Proposition 2.1. Let Sk denote the set of piecewise differentiable functions
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F : [0, 1] → R supported on Rk := {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1} with Ik(F ) 6= 0 and

J
(m)
k (F ) 6= 0 for each m. Let

Mk := sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
and let rk :=

⌈
θMk

2

⌉
.

There are infinitely many α ∈ A such that at least rk of the α + hi (1 ≤ i ≤ k) are prime.

Proof. We mimic the proof of [11, Proposition 4.2]. Recall from §2.2 that if S := S2−ρS1 > 0
for a certain N , then there are more than ρ primes among the α + hi (1 ≤ i ≤ k), for some
α ∈ A(N). Consequently, if S > 0 for all large N , then there are infinitely many translates of
(h1, . . . , hk) containing more than ρ primes. Put R = |A(N)|θ/2−ε for a small ε > 0. Choose

F0 ∈ SK so that
∑k

m=1 J
(m)
k (F0) > (Mk − ε)Ik(F0). Using Proposition 2.1, we see we can

choose the weights λd1,...,dk so that

S =
ϕ(w)k

|w|k+1
|A(N)|(cA logR)k

(
(cA logR)|P (N)|

|A(N)|

k∑
m=1

J
(m)
k (F )− ρIk(F0) + o(1)

)

≥ ϕ(w)k

|w|k+1
|A(N)|(cA logR)kIk(F0)

(
∆ ·
(
θ

2
− ε
)

(Mk − ε)− ρ+ o(1)

)
,

where

∆ := cA · lim
N→∞

|P (N)| log |A(N)|
|A(N)|

.

(The existence of this limit will be shown momentarily.) If ρ = ∆·Θ·Mk/2−δ, then choosing
ε sufficiently small, we get that S > 0 for large N . Since δ > 0 was arbitrary, there must be
infinitely many α ∈ A such that at least d∆ ·Θ ·Mk/2e of the α+ hi (1 ≤ i ≤ k) are prime.

We now show that ∆ = 1, which will complete the proof of the proposition. We consider
separately the cases when A = Fq[t] and when A = OK .

If A = Fq[t], then ζA(s) = 1
1−q1−s and so cA = 1

log q
. On the other hand, for N = qn, we

have |A(N)| = qn and |P (N)| = qn/n+ O(qn/2/n). (For all of these facts, see, e.g., [16, pp.
11–14].) Thus, |P (N)| ∼ |A(N)| log q/ log |A(N)| as N = qn →∞, and so ∆ = 1.

Suppose now that A = OK , where K is a number field with r1 real embeddings and r2 pairs
of complex conjugate embeddings. Consider the region in Minkowski space corresponding
to the conditions defining A0(N):

{(x1, . . . , xr1 , zr1+1, . . . , zr1+r2) ∈ Rr1 × Cr2 : 0 ≤ xi ≤ N, |zj| ≤ N

for all 1 ≤ i ≤ r1 and r1 + 1 ≤ j ≤ r1 + r2}.

This has volume Nd · πr2 . On the other hand, the image of OK under the Minkowski
embedding is a lattice with covolume 2−r2

√
|DK |, where DK denotes the discriminant of K.

It follows that |A0(N)| ∼ (2π)r2Nd/
√
|D|, as N →∞. Since A(N) = A0(2N) \ A0(N),

|A(N)| ∼ (2π)r2(2N)d(1− 1/2d)√
|D|

.
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We turn now to the estimation of |P (N)|. For this, we employ Mitsui’s generalized prime
number theorem [12], a special case which is that the number of primes in A0(N) is

∼ wK
2r1hKRegK

∫
· · ·
∫

[2,N ]r1×[2,N2]r2

du1 . . . dur1+r2
log(u1 . . . ur1+r2)

,

as N → ∞. Here wK is the number of roots of unity contained in K, hK is the class
number of K, and RegK is the regulator of K. The integral appearing here is asymptotic to
Nd/ log (Nd), by [8, Lemma 6]. Hence,

|P (N)| ∼ wK
2r1hKRegK

(1− 1/2d)
(2N)d

log((2N)d)
.

Finally, Dedekind’s class number formula asserts that

cA =
2r1(2π)r2hKRegK

wK
√
|DK |

.

Referring back to the definition of ∆, we find after some algebra that indeed ∆ = 1. �

As shown by Maynard [11, Proposition 4.13], we have Mk > log k − 2 log log k − 2 for
all large enough values of k. In particular, Mk → ∞ as k → ∞. So Theorem 1.1 follows
at once from Corollary 2.6 provided that the primes in OK always possess a positive level
of distribution. Similarly, Theorem 1.3 follows provided that the primes in Fq[t] possess a
positive level of distribution not depending on q. Both provisos were already asserted to
hold in §2.1. In fact, we have the following:

Theorem 2.7 (Hinz). Let K/Q be a number field with r2 pairs of complex conjugate embed-
dings. If r2 = 0 (i.e., K is totally real), the set P of primes of OK has level of distribution
θ for any θ < 1

2
. In general, P has level of distribution θ for any θ < 1

r2+
5
2

.

Theorem 2.8. If A = Fq[t], then the set P has level of distribution 1
2
. Indeed, for all q and

N , we have the (stronger) pointwise error estimate

max
α0 mod q
(α0,q)=1

|E(N ; q, α0)| � (log 2|q|) · |A(N)|1/2.

Theorem 2.7 is contained in the somewhat more general main theorem of [9]. Theorem
2.8 is a consequence of Weil’s Riemann Hypothesis and was first deduced by Hayes [7] (see
also [1]).

3. Applications

3.1. Bounded gaps in totally real number fields. The proof of Corollary 1.2 makes use
of the following simple observation.

Lemma 3.1. Suppose that H is an admissible tuple in Z. Then H is also an admissible
tuple in OK for every number field K.

Proof. The reduction of H modulo p always lands in the prime subfield of OK/p and so
cannot cover OK/p unless p has degree 1. But if p has degree 1, then OK/p ∼= Z/pZ for
some rational prime p, and H fails to cover Z/pZ since H is admissible in Z. �
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Suppose now that K is totally real. By Theorem 2.7, the primes in K have level of
distribution θ for any θ < 1

2
. Maynard [11, Proposition 4.3] has shown that the number M105

in Corollary 2.6 satisfies M105 > 4. Corollary 1.2 follows now from Corollary 2.6, Lemma 3.1,
and the result of Engelsma that there exists an admissible 105-tuple h1 < h2 < · · · < h105 of
rational integers with h105 − h1 = 600.

3.2. Gap densities in Fq(t). We now turn our attention to Theorem 1.4, which we recall
concerns gaps between monic irreducibles of fixed large degree n.

Proof of Theorem 1.4. Let k0 := k0(2) from Theorem 1.3, and assume that q ≥ k0 + 1.
(i) We wish to show that any monomial a · td ∈ Fq[t] occurs as a gap between monic

irreducibles of degree n for every sufficiently large n satisfying (n− d, q − 1) = 1.
For any q, the tuple {αtd : α ∈ F×q } is admissible, and so, because q ≥ k0 + 1, we may

apply Theorem 1.3. We thus see that, for each sufficiently large n, some monomial c · td
occurs as a gap between monic irreducibles of degree n; call these irreducibles f1(t) and
f2(t). If (n− d, q − 1) = 1, there is an ω ∈ F×q such that ωn−d = c/a, and we note that the
polynomials f1(ωt)/ω

n and f2(ωt)/ω
n are monic and irreducible. We then compute that

f1(ωt)

ωn
− f2(ωt)

ωn
=
c · (ωt)d

ωn
=

c

ωn−d
· td = a · td.

(ii) We now turn our attention to the second part of Theorem 1.3 concerning the proportion
of degree d polynomials that appear as gaps in degree n.

Let Z(k, d, n) denote the assertion that, for any admissible k-tuple (h1, . . . , hk) such that
each of h1, . . . , hk and h1 − h2, h1 − h3, . . . , hk−1 − hk is of degree d, there is an f ∈ Fq[t] of
degree n such that at least two of f +h1, . . . , f +hk are monic and irreducible; we note that
Theorem 1.3 implies that Z(k0, d, n) holds for any d provided that n is sufficiently large. We
will prove by induction on k ≤ k0 that if Z(k, d, n) holds, then the proportion of polynomials
of degree d appearing as gaps in degree n is at least 1

k−1 −
1
q−1 .

If k = 2, the assertion is clear: Z(2, d, n) implies that every non-zero polynomial of degree
d appears as a gap. For k ≥ 3, we note that either Z(k − 1, d, n) holds or it doesn’t. If we
are in the former case, then, as 1/(k− 1) is decreasing, the conclusion follows. On the other
hand, if Z(k − 1, d, n) does not hold, then there must be h1, . . . , hk−1 as above for which
there is no f ∈ Fq[t] of degree n such that two of f +h1, . . . , f +hk−1 are monic irreducibles.
Now q ≥ k0 +1 > k; thus, for any h of degree d with each difference h−h1, . . . , h−hk−1 also
of degree d, the tuple (h1, . . . , hk−1, h) is admissible. Since we are assuming Z(k, d, n) holds,
there must be an f of degree n for which f +h and some f +hi are both monic irreducibles;
hence, h − hi occurs as a gap. Varying over the (q − 1 − (k − 1)) · qd such h, each gap can
appear at most k − 1 times, whence the number of distinct gaps is at least

(q − 1− (k − 1)) · qd

k − 1
.

Noting that there are qd · (q−1) elements of degree d, the claim follows. Lastly, the assertion
about monomials comes from only looking at tuples (h1, . . . , hk) with each hi a distinct
monomial of degree d. �
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