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Bertrand’s Postulate

“I’ve said it once and I’ll say it again: There’s always a prime between n
and 2n.”

-Joseph Bertrand, conjectured in 1845
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Bertrand’s Postulate

Bertrand did not prove his postulate. He verified the statement (by hand)
for all positive integers n up to 6,000,000.

In 1850, Chebyshev proved Bertrand’s Postulate. For this reason, it is also
referred to as “Chebyshev’s Theorem.”
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Bertrand’s Postulate

Many other proofs have been found in the time since Chebyshev first
proved this theorem. We will follow a proof due to Ramanujan and Erdös.
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Fun With Binomial Coefficients

Definition

n! = # of ways of ordering n elements

Definition(n
k

)
= # of ways of choosing k elements from a set containing n objects,

without worrying about order.
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Fun With Binomial Coefficients

There is a curious relationship between
(n
k

)
and Pascal’s Triangle.

If we write down Pascal’s Triangle, the first few rows are:
1
1 1
1 2 1
1 3 3 1

We can obtain the numbers in the next row by adding adjacent pairs
of numbers from the previous row:
1 3 3 1
1 4 6 4 1

The elements in the 4th row are precisely
(4
0

)
through

(4
4

)
.
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Fun With Binomial Coefficients

Another interesting observation that you might make is that, at least
in the examples above, the sum of all of the elements in a row is a
power of 2.

For example, 1 + 2 + 1 = 22 and 1 + 3 + 3 + 1 = 23.

Exercise:
n∑

k=0

(n
k

)
= 2n.
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Fun With Binomial Coefficients

One particular type of binomial coefficient will be of interest to us as
we prove Bertrand’s Postulate. That coefficient is

(2n
n

)
, the coefficient

in the center of the 2nth row of Pascal’s Triangle.

Which primes divide
(2n

n

)
? Let’s look at some examples.(4

2

)
= 6. Which primes divide 6? What about

(6
3

)
?
(8
4

)
?
(10

5

)
?

Any conjectures about when a prime has to divide
(2n

n

)
?

Exercise: p |
(2n

n

)
if there exists a positive integer j with n < pj ≤ 2n
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Fun With Binomial Coefficients
Assuming that those exercises are true, we can prove two results:

Lemma (1)∏
p:n<pj≤2n

p |
(

2n

n

)
.

Proof We know that each prime p with n < pj ≤ 2n divides(2n
n

)
.Since the primes are distinct, they are pairwise relatively

prime.Thus, their product must divide
(2n

n

)
.

Lemma (2)(2n
n

)
≤ 4n for all n ≥ 0.

Proof Look at the 2nth row of Pascal’s Triangle:
(2n

n

)
is in the center,

22n = sum of all terms in the row.
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A Few New Arithmetic Functions
We’re already familiar with σ, τ and ϕ. Let’s define some new
arithmetic functions:

Definition

Λ(n) =

{
log p, n = pk , k > 0

0, otherwise

Examples: Λ(2) = log 2, Λ(4) = log 2, Λ(6) = 0.

Definition

ψ(x) =
∑
n≤x

Λ(n)

Example:
ψ(6) = 0 + log 2 + log 3 + log 2 + log 5 + 0 = log(22 · 3 · 5) = log(60).
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An Upper Bound for ψ(x)

Lemma

ψ(x) ≤ x log 4

For now, let’s pretend that x ∈ Z. This will allow us to use the
Well-Ordering Principle.

Base Case: If n = 1, then ψ(1) =
∑
n≤1

Λ(n) = Λ(1) = 0.

(This is certainly ≤ 1·log 4)
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Proof of Upper Bound for ψ(x)

Let S = {x ∈ Z+ | ψ(x) > x log 4}. Assume that S is non-empty. Then,
by Well-Ordering Principle, S has a least element. Call it l .

Case 1: l = 2k

ψ(2k)− ψ(k)

=
∑
n≤2k

Λ(n)−
∑
n≤k

Λ(n) (from definition of ψ)

=
∑

k<n≤2k

Λ(n) (canceling terms)

≤ log
(2k

k

)
(since Λ(n) = p if n = pj and 0 otherwise,
so this line follows from Lemma (1)
after taking log of both sides)
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Proof of Upper Bound for ψ(x)

From the previous slide: ψ(2k)− ψ(k) ≤ log
(2k

k

)
.

From Lemma (2),
(2k

k

)
≤ 4k , i.e. ψ(2k)− ψ(k) ≤log(4k).

From high school math: log(4k) = k log 4.

So ψ(2k) ≤ ψ(k) + k log 4

≤ k log 4+k log 4 (since l = 2k was the smallest element in S ,
so k /∈ S ⇒ ψ(k) ≤ k log 4)

∴ ψ(2k) ≤ 2k log 4, ie. l cannot be even.
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Proof of Upper Bound for ψ(x)

Case 2: l = 2k + 1.

The argument for the case where l is odd is similar to the case where l is
even. The result is the same, i.e. it shows that l cannot be odd.
Since the least element of S is neither even nor odd then S must empty.

Remark: The inequality ψ(x) ≤ x log 4 holds for ALL x ≥ 1 (not just
integers). Why?

ψ(x) = ψ(bxc) ≤ bxclog4 ≤ x log 4.
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Proving Bertrand’s Postulate

We will use what we have learned about
(2n

n

)
and ψ(x) in order to prove

our main result:

Theorem (Bertrand’s Postulate)

For every n ∈ Z+, there exists a prime p such that n < p ≤ 2n.
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The Setup : ABC =
(

2n
n

)
Let A =

∏
n<p≤2n p.

From Lemma (1), we know that A |
(2n

n

)
. So, there exists m ∈ Z st.

A ·m =
(2n

n

)
.

By the Unique Factorization Theorem, we can factor m into a
product of primes (uniquely).

Let B = contribution to
(2n

n

)
from primes p ∈ (

√
2n, n].

Let C = contribution to
(2n

n

)
from primes p ≤

√
2n.

Then ABC =
(2n

n

)
.
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The Setup : ABC =
(

2n
n

)
Goal: We want to show that BC <

(2n
n

)
.

Why does this imply that Bertrand’s Postulate holds?

If BC <
(2n

n

)
then A 6= 1.

But A =
∏

n≤p≤2n p, so there must be a prime dividing A.

In other words, there must be a prime between n and 2n dividing
(2n

n

)
.

This proves Bertrand’s Postulate because it proves the existence of a
prime between n and 2n.
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The Setup : ABC =
(

2n
n

)

In order to show that BC <
(2n

n

)
, we will find upper bounds for B and C

and we will find a lower bound for
(2n

n

)
.
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A Lower Bound for
(

2n
n

)
Lemma(2n

n

)
≥ 4n

2n

Proof

In an earlier exercise, we showed that
2n∑
j=0

(2n
j

)
= 4n.

Since the two end terms in a row of Pascal’s triangle are both 1, then
2n∑
j=0

(2n
j

)
= 2 +

2n−1∑
j=1

(2n
j

)
.

We know that the middle term,
(2n

n

)
, is the largest term in the sum.

Thus, 2 +
2n−1∑
j=1

(2n
j

)
≤ (2n)

(2n
n

)
since we are summing 2n terms.
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Another Pair of Useful Exercises

The following exercises will also be useful in bounding BC :

Exercise Prove or disprove and salvage if possible: If x ∈ R, then
b2xc − 2bxc = 0 or 1.

Exercise (a) What power of the prime p appears in the prime
factorization of n!?
(b) What power of p appears in the factorization of

(n
k

)
?
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An Upper Bound for C

Lemma

C ≤ (2n)
√

2n−1

Proof

Let k be the highest power of p dividing
(2n

n

)
. Have you solved both

of the exercises on the previous slide? Once you have, you will see

that k ≤
∑

j :pj≤2n

1.

The sum on the right counts the number of j that satisfy pj ≤ 2n.

In order to determine that number, we need to solve the equation
px ≤ 2n. But this is the same as solving x log p ≤ log 2n.

Thus, x ≤ log 2n
log p .
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An Upper Bound for C

Since the j that satisfy pj ≤ 2n must be integers,

then
∑

j :pj≤2n

1 = b log 2n

log p
c.

Recall that C =
∏

p≤
√

2n

p|
(2n

n

) p.

Suppose that a prime p is not included in C , i.e. p >
√

2n and p ≤ 2n.

Then b log 2n
log p c = 1.

So all of the primes p such that pk |
(2n

n

)
for k > 1 must occur in C .
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An Upper Bound for C

Recalling that C =
∏

p≤
√

2n

p|
(2n

n

) p, we have

C ≤
∏

p≤
√

2n

pb
log 2n
log p
c

≤
∏

p≤
√

2n

p
log 2n
log p

=
∏

p≤
√

2n

e log 2n (log rule: pα = eα log p)

=
∏

p≤
√

2n

2n

Lola Thompson (Ross Program) Bertrand’s Postulate July 3, 2009 24 / 33



An Upper Bound for C

Recalling that C =
∏

p≤
√

2n

p|
(2n

n

) p, we have

C ≤
∏

p≤
√

2n

pb
log 2n
log p
c

≤
∏

p≤
√

2n

p
log 2n
log p

=
∏

p≤
√

2n

e log 2n (log rule: pα = eα log p)

=
∏

p≤
√

2n

2n

Lola Thompson (Ross Program) Bertrand’s Postulate July 3, 2009 24 / 33



An Upper Bound for C

Recalling that C =
∏

p≤
√

2n

p|
(2n

n

) p, we have

C ≤
∏

p≤
√

2n

pb
log 2n
log p
c

≤
∏

p≤
√

2n

p
log 2n
log p

=
∏

p≤
√

2n

e log 2n (log rule: pα = eα log p)

=
∏

p≤
√

2n

2n

Lola Thompson (Ross Program) Bertrand’s Postulate July 3, 2009 24 / 33



An Upper Bound for C

But
∏

p≤
√

2n

2n = (2n)π(
√

2n), where π(
√

2n) = # of primes ≤
√

2n.

Since 1 is not prime, then π(
√

2n) ≤
√

2n − 1.

Thus, we see that C ≤ (2n)
√

2n−1.
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An Upper Bound for B

Lemma

B ≤ 4
2
3
n

Proof

Recall that B =
∏

√
2n<p≤n

p|
(2n

n

) p.

For all n > 4.5,
√

2n < 2
3n

(square both sides, then divide both sides by n)

We will separate B into two products:
∏

√
2n<p≤ 2

3
n

p and
∏

2
3
n<p≤n

p.
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An Upper Bound for B

Let p ∈ (2
3n, n].

We will show that k = 0 when p is in this range, where k is the
highest power of p dividing

(2n
n

)
.

Since p ∈ (2
3n, n], we have 1 ≤ n

p <
3
2 .

Thus n
p = 1 + r , with 0 ≤ r < 1

2 .

Using this fact with the formula for k that you found in the problem

set yields k = 0. So, the product
∏

2
3
n<p≤n

p doesn’t contribute any

primes to B.

∴ B =
∏

√
2n<p≤n

p|
(2n

n

) p ≤
∏

p≤ 2
3
n

p ≤ 4
2
3
n (since ψ(x) ≤ x log 4).
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Putting Everything Together

What we have shown:(2n
n

)
= ABC(2n

n

)
≥ 4n

2n

C ≤ (2n)
√

2n−1

B ≤ 4
2
3
n

So, A =
(2n

n

)
/(BC )

≥
4n

2n

(2n)
√

2n−1·4
2
3 n

= 4
1
3 n

(2n)
√

2n
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Putting Everything Together

Remember that in order for Bertrand’s Postulate to hold, we need to
show that A > 1. Thus, we need to determine when 4

1
3
n > (2n)

√
2n.

Using high school math, we can show that 4
1
3
n > (2n)

√
2n holds when

n > 450.

∴ Bertrand’s Postulate holds for all n > 450.
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Finishing Up

In order to conclude that Bertrand’s Postulate is true for all n ∈ Z+, we
just need to check values of n ≤ 450.

Remember that Bertrand checked all n up to 6,000,000, so if you believe
him then we’re done!

If not, consider the list of primes 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631,
where each is less than twice the preceding. This proves Bertrand’s
Postulate for all n < 631, since any such n can be squeezed between two
numbers on the list.

Lola Thompson (Ross Program) Bertrand’s Postulate July 3, 2009 30 / 33



Generalizations

One way that a mathematician finds new problems to solve is by looking
at a result that has already been proven and asking “Does this hold in a
more general setting?”

Of course, “more general” can mean many different things. For example,
we showed that

(2n
n

)
≤ 4n for all n ≥ 0. Perhaps we could have shown a

similar result for any integer n. Another generalization would be to try to
bound

(kn
n

)
, k ∈ Z+.

Can you think of a “more general” statement of Bertrand’s Postulate?
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Generalizations

Here are a few well-known generalizations of Bertrand’s Postulate:

Theorem (Sylvester)

The product of k consecutive integers greater than k is divisible by a
prime greater than k.

Theorem (Erdös)

For any positive integer k, there is a natural number N such that for all
n > N, there are at least k primes between n and 2n.

Conjecture (Legendre) For every n > 1, there is a prime p such
that n2 < p < (n + 1)2.
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Some Neat Applications

Using Bertrand’s Postulate, we can also prove many other interesting
results, including:

Every integer n > 6 can be written as a sum of distinct primes.

∀N ∈ N, there exists an even integer k > 0 for which there are at
least N prime pairs p, p + k .
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