How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi \stackrel{S}{S} F$

Generalizations and average results

S. Akhtari, C. David, H. Hahn \& L. Thompson

January 12, 2013

Definitions

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi \stackrel{S}{S}$

Generalizations and average results

Definition

An elliptic curve is a curve given by an equation of the form

$$
y^{2}=x^{3}+a x+b
$$

where $a, b \in \mathbb{Q}$ and $\Delta:=-16\left(4 a^{3}+27 b^{2}\right)$ is nonzero.

We can represent the set of points on an elliptic curve as

$$
E(\mathbb{Q}):=\left\{(x, y) \in \mathbb{Q} \times \mathbb{Q}: y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\},
$$

where \mathcal{O} is the point at infinity.
So, $\# E(\mathbb{Q})=1+\#\left(\right.$ rational solutions to $\left.y^{2}=x^{3}+a x+b\right)$.

Counting points on E / \mathbb{F}_{p}

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S F}$

Generalizations and average results

We can reduce E / \mathbb{Q} to a curve over \mathbb{F}_{p} :

$$
E\left(\mathbb{F}_{p}\right):=\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: y^{2} \equiv x^{3}+a x+b \quad(\bmod p)\right\} \cup\{\mathcal{O}\} .
$$

Example: Consider $E: y^{2}=x^{3}+2 x+1$ over \mathbb{F}_{5}.

x	$\mathrm{x}^{3}+2 x+1(\bmod 5)$	y
0	1	1,4
1	4	2,3
2	3	-
3	4	2,3
4	3	-

$\therefore \# E\left(\mathbb{F}_{5}\right)=2+2+2+1=7$.

Counting points on E / \mathbb{F}_{p}

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{D}^{S F}$

Generalizations and average results

We can reduce E / \mathbb{Q} to a curve over \mathbb{F}_{p} :

$$
E\left(\mathbb{F}_{p}\right):=\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: y^{2} \equiv x^{3}+a x+b \quad \bmod p\right\} \cup\{\mathcal{O}\} .
$$

Remark

$$
\# E\left(\mathbb{F}_{p}\right)=p+1-a_{p}(E) \text {, where }\left|a_{p}(E)\right| \leq 2 \sqrt{p} .
$$

There are a number of theorems (and open conjectures!) concerning how often $\# E\left(\mathbb{F}_{p}\right)$ takes on certain values.

Fixed integer values of $a_{p}(E)$

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting

 points on elliptic curvesSquarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S F}$

Generalizations and average results

$$
\pi_{E, t}(X) \sim C_{E, t} \cdot \frac{\sqrt{X}}{\log X}
$$

Prime values of $p+1-a_{p}(E)$

How often is $\# E\left(\mathbb{F}_{p}\right)$
squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting

 points on elliptic curvesSquarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi \stackrel{S}{S}$

Generalizations and average results

Conjecture (Koblitz, 1988)

Let $\pi_{E, \text { prime }}:=\#\left\{p \leq X: \# E\left(\mathbb{F}_{p}\right)\right.$ is prime $\}$. Then

$$
\pi_{E, \text { prime }}(X) \sim C_{E, \text { prime }} \cdot \frac{X}{(\log X)^{2}}
$$

Squarefree values of $p+1-a_{p}(E)$

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{D}^{S F}$ π_{E}
Generalizations and average results

- When E is a CM curve, Cojocaru obtained the correct proportion of primes p for which $p+1-a_{p}(E)$ is squarefree.

Squarefree values of $p+1-a_{p}(E)$

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi \stackrel{S}{S} F$

Generalizations and average results

- When E is a CM curve, Cojocaru obtained the correct proportion of primes p for which $p+1-a_{p}(E)$ is squarefree.
- When E is a non-CM curve, Cojocaru showed how to obtain the correct proportion by assuming the GRH, Pair Correlation Conjecture and Artin Holomorphy Conjecture.

An (unconditional) conjecture for non-CM curves

How often is $\# E\left(\mathbb{F}_{p}\right)$
squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting
points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S F}$

Generalizations and average results

Conjecture

Let E be a non-CM elliptic curve defined over \mathbb{Q}. Let $\pi_{E}^{S F}=\#\left\{p \leq X: p+1-a_{p}\right.$ is squarefree $\}$. As $X \rightarrow \infty$, we have

$$
\pi_{E}^{S F}(X) \sim C_{E}^{S F} \pi(X)
$$

where $C_{E}^{S F}$ is the predicted constant.

An (unconditional) upper bound

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S F}$

Generalizations and average results

Theorem (Akhtari, David, Hahn, T., 2012)

Let E be a non-CM elliptic curve defined over \mathbb{Q}. For X sufficiently large (depending on E), and any $\varepsilon>0$, we have

$$
\pi_{E}^{S F}(X) \leq C_{E}^{S F} \pi(X)\left(1+O\left(\frac{1}{(\log \log X)^{1-\varepsilon}}\right)\right)
$$

Key Lemmas

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{S}^{S F}$

Generalizations and average results

Lemma (Effective Chebotarev Density Theorem)

Let $K=\mathbb{Q}(E[n])$, and C a union of conjucacy classes in $\operatorname{Gal}(K / \mathbb{Q})$. For all X such that $\log X \gg_{E} n^{12}(\log n)^{2}$, we have

$$
\pi_{C, K}(X)=\frac{|C|}{|\operatorname{Gal}(K / \mathbb{Q})|} \pi(X)+O\left(X \exp \left(-\frac{A}{n^{2}} \sqrt{\log X}\right)\right)
$$

where A is an absolute constant.

Proof Sketch

How often is
$\# E\left(\mathbb{F}_{p}\right)$
squarefree?
S. Akhtari, C.
David, H.
Hahn \& L.
Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S} F$

Generalizations and average results

$$
P(z):=\prod_{\ell \leq z} \ell
$$

and let $G_{E}(n)$ be a particular subgroup of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$. Let

$$
\Omega_{E}\left(P(z)^{2}\right):=\left\{g \in G_{E}\left(P(z)^{2}\right) \mid \ell^{2} \nmid(\operatorname{det} g+1-\operatorname{tr} g), \forall \ell \leq z\right\} .
$$

Proof Sketch

How often is $\# E\left(\mathbb{F}_{p}\right)$
squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S} F$

Generalizations and average results

Let

$$
P(z):=\prod_{\ell \leq z} \ell
$$

and let $G_{E}(n)$ be a particular subgroup of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$. Let

$$
\Omega_{E}\left(P(z)^{2}\right):=\left\{g \in G_{E}\left(P(z)^{2}\right) \mid \ell^{2} \nmid(\operatorname{det} g+1-\operatorname{tr} g), \forall \ell \leq z\right\} .
$$

By the Effective CDT, we have

$$
\begin{aligned}
\pi_{E}^{S F}(X) & \leq \#\left\{p \leq X: \ell^{2} \nmid p+1-a_{p}(E), \forall \ell \leq z\right\} \\
& =\pi(X) \cdot\left|\frac{\Omega_{E}\left(P(z)^{2}\right)}{G_{E}\left(P(z)^{2}\right)}\right|+O\left(X \exp \left(-\frac{A}{P(z)^{4}} \sqrt{\log X}\right)\right),
\end{aligned}
$$

for X sufficiently large.

Proof Sketch

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree? David, H. Hahn \& L. Thompson

Counting

 points on elliptic curvesSquarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S F}$ π_{E}

Generalizations and average results

Let

$$
C_{E}(n)=\left\{g \in G_{E}(n): \operatorname{det} g+1-\operatorname{tr} g \equiv 0 \quad(\bmod n)\right\} .
$$

Proof Sketch

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of
$\# E\left(\mathbb{F}_{p}\right)$
An upper bound for $\pi_{E}^{S} F$

Generalizations and average results

Let

$$
C_{E}(n)=\left\{g \in G_{E}(n): \operatorname{det} g+1-\operatorname{tr} g \equiv 0 \quad(\bmod n)\right\} .
$$

Using the Möbius function to detect squares, we have

$$
\begin{aligned}
\frac{\left|\Omega_{E}\left(P(z)^{2}\right)\right|}{\left|G_{E}\left(P(z)^{2}\right)\right|} & =\sum_{n \mid P(z)} \mu(n) \frac{\left|C_{E}\left(n^{2}\right)\right|}{\left|G_{E}\left(n^{2}\right)\right|} \\
& =C_{E}^{S F}+O\left(\sum_{n \geq z} \frac{\left|C_{E}\left(n^{2}\right)\right|}{\left|G_{E}\left(n^{2}\right)\right|}\right) .
\end{aligned}
$$

Proof Sketch

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H . Hahn \& L. Thompson
Counting points on elliptic curves
\section*{Use a matrix-counting argument to bound}
Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$
An upper bound for $\pi_{F}^{S F}$
Generalizations and average results
$$
\sum_{n \geq z} \frac{\left|C_{E}\left(n^{2}\right)\right|}{\left|G_{E}\left(n^{2}\right)\right|}<_{E} \frac{1}{z^{1-\varepsilon}}
$$

Proof Sketch

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S} F$

Generalizations and average results

Use a matrix-counting argument to bound

$$
\sum_{n \geq z} \frac{\left|C_{E}\left(n^{2}\right)\right|}{\left|G_{E}\left(n^{2}\right)\right|}<_{E} \frac{1}{z^{1-\varepsilon}}
$$

Choose the largest possible z so that the error term is still smaller than the main term. This yields

$$
\pi_{E}^{S F} \leq C_{E}^{S F} \cdot \pi(X)\left(1+O_{E}\left(\frac{1}{(\log \log X)^{1-\varepsilon}}\right)\right)
$$

A generalization

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Instead of just looking at $p+1-a_{p}(E)$, we could examine other sequences of values associated with the reduction of E over \mathbb{F}_{p}.

A generalization

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi^{S F}$ π_{E}^{S}

Generalizations and average results

Instead of just looking at $p+1-a_{p}(E)$, we could examine other sequences of values associated with the reduction of E over \mathbb{F}_{p}.

Example How often is $a_{p}(E)^{2}-4 p$ squarefree?

A generalization

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi^{S} F$ π_{E}^{S}

Generalizations

 and average resultsInstead of just looking at $p+1-a_{p}(E)$, we could examine other sequences of values associated with the reduction of E over \mathbb{F}_{p}.

Example How often is $a_{p}(E)^{2}-4 p$ squarefree?

We can show that our upper bound for $\pi_{E}^{S F}$ holds when $p+1-a_{p}(E)$ is replaced with $a_{p}(E)^{2}-4 p$.

A generalization

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi^{S} F$ π_{E}

Generalizations and average results

Instead of just looking at $p+1-a_{p}(E)$, we could examine other sequences of values associated with the reduction of E over \mathbb{F}_{p}.

Example How often is $a_{p}(E)^{2}-4 p$ squarefree?

We can show that our upper bound for $\pi_{E}^{S F}$ holds when $p+1-a_{p}(E)$ is replaced with $a_{p}(E)^{2}-4 p$.

In fact, our upper bound holds for any sequence

$$
\left\{f_{p}(E):=f\left(a_{p}(E), p\right): p \text { prime }\right\}!
$$

An average conjecture

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{E}^{S F}$

Generalizations and average results

Let

$$
\pi_{E, f}^{S F}:=\#\left\{p \leq X: f_{p}(E) \text { squarefree }\right\} .
$$

Conjecture

Let E be a non-CM elliptic curve defined over \mathbb{Q}. As $X \rightarrow \infty$, we have

$$
\frac{1}{|\mathcal{C}(A, B)|} \sum_{E \in \mathcal{C}(A, B)} \pi_{E, f}^{S F}(X) \sim C_{f}^{S F} \pi(X)
$$

where

$$
C_{f}^{S F}:=\prod_{\ell}\left(1-\frac{\left|C_{f}\left(\ell^{2}\right)\right|}{\left|\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{2} \mathbb{Z}\right)\right|}\right)
$$

An average result

How often is $\# E\left(\mathbb{F}_{p}\right)$
squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting points on elliptic curves

Squarefree values of $\# E\left(\mathbb{F}_{p}\right)$

An upper bound for $\pi_{D}^{S F}$ π_{E}
Generalizations and average results

We provide some evidence for this conjecture:

$$
\begin{aligned}
& \text { Theorem (Akhtari, David, Hahn, T., 2012) } \\
& \text { Let } f_{p}(E)=p+1-a_{p}(E) \text { or } a_{p}(E)^{2}-4 p \text {. As } A, B \rightarrow \infty \text {, we } \\
& \text { have } \\
& \qquad \frac{1}{|\mathcal{C}(A, B)|} \sum_{E \in \mathcal{C}(A, B)} C_{E, f}^{S F} \sim C_{f}^{S F} .
\end{aligned}
$$

How often is $\# E\left(\mathbb{F}_{p}\right)$ squarefree?
S. Akhtari, C. David, H. Hahn \& L. Thompson

Counting

points on
elliptic curves
Squarefree values of
$\# E\left(\mathbb{F}_{p}\right)$
An upper

bound for

 SFπ_{E}^{S}
Generalizations and average results

Thank you!

